首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A pure silica gel (Pia Seed 5S-60-SIL), synthesized by the hydrolysis of pure tetraethoxysilane [Si(OCH2CH3)4], was applied as a cation-exchange stationary phase in ion chromatography with indirect photometric detection for common mono-and divalent cations (Li+, Na+, NH4 +, K+, Mg2+, and Ca2+) using various protonated aromatic monoamines (tyramine [4-(2-aminethyl) phenol], benzylamine, phenylethylamine, 2-methylpyridine and 2,6-dimethylpyridine) as eluet ions. When using 0.75 mM tyramine-0.25 mM oxalic acid-1.5 mM 18-crown-6 (1,4,7,10,13,16-hexaoxacyclooctadecane) at pH 5.0 as the eluent, excellent simultaneous separation and highly sensitive detection at 275 nm for these mono-and divalent cations were achieved on the Pia Seed 5S-60-SIL column (150×4.6 mm I.D.) in 20 min.  相似文献   

2.
The application of unmodified silica gel (Super Micro Bead Silica Gel B-5, SMBSG B-5) as a cation-exchange stationary phase in ion chromatography with indirect photometric detection (IC-IPD) for the separation of common mono- and divalent cations (Li+, Na+, NH4+, K+, Mg2+ and Ca2+) was carried out using various aromatic monoamines [tyramine [4-(2-aminoethyl)phenol], benzylamine, phenylethylamine, 2-methylpyridine and 2,6-dimethylpyridine] as eluents. When using these amines as eluents, the peak resolution between these mono- and divalent cations was not quite satisfactory and the peak shapes of NH4+ and K+ were largely destroyed on the SMBSG B-5 silica gel column. Hence, the application of SMBSG B-5 silica gel calcinated at 200, 400, 600, 800 and 1000 degrees C for 5 h in the IC-IPD was carried out. The peak shapes of the monovalent cations were greatly improved with increasing calcination temperature and, as a result, symmetrical peaks of these mono- and divalent cations were obtained on the SMBSG B-5 silica gel calcinated at 1000 degrees C as the stationary phase. In contrast, the peak resolution between these mono- and divalent cations was not improved. Therefore, crown ethers [18-crown-6 (1,4,7,10,13,15-hexaoxacyclooctadecane), 15-crown-5 (1,4,7,10,13-pentaoxacyclopentadecane)] were added to the eluent for the complete separation of these mono- and divalent cations. Excellent simultaneous separation and highly sensitive detection at 275 nm were achieved in 25 min on a column (150x4.6 mm I.D.) packed with SMBSG B-5 silica gel calcinated at 1000 degrees C by elution with 0.75 mM tyramine-0.25 mM oxalic acid at pH 5.0 containing either 1.0 mM 18-crown-6 or 10 mM 15-crown-5.  相似文献   

3.
Summary Pure silica gel (Pia Seed 5S-60-SIL) has been investigated as a cation-exchange stationary phase for ion chromatography of common monovalent and divalent cations (Li+, Na+, NH4+, K+, Mg2+, and Ca2+) with conductimetric detection; dilute oxalic acid (0.05 mm oxalic acid, pH 4.1, to 1 mm oxalic acid, pH 3.0) was used as mobile phase. The Pia Seed 5S-60-SIL silica gel acted as a cation-exchange stationary phase for these cations when 0.2 mm oxalic acid at pH 3.6 was used as the mobile phase. Excellent simultaneous separation and highly sensitive indirect conductimetric detection of these cations were achieved in 20 min on a 150 mm × 4.6 mm i.d. Pia Seed 5S-60-SIL silica gel column with 0.2 mm oxalic acid containing 4 mm 18-crown-6 (1,4,7,10,13,16-hexaoxacycloctadecane), pH 3.7, as mobile phase (detection limits (signal-to-noise ratio, 3, injection volume, 20 L), were 0.15 m for Li+, 0.16 m for Na+, 0.21 m for NH4+, 1.0 m for K+, 0.17 m for Mg2+, and 0.25 m for Ca2+). The proposed IC–CD method was successfully applied to the separation and detection of major cations (Na+, NH4+, K+, Mg2+, and Ca2+) in rain and river water samples.  相似文献   

4.
A series of double-armed benzo-15-crown-5 lariats (3–8) have been synthesized by the reaction of 4′, 5′-bis(bromomethyl)-benzo-15-crown-5 (2) with 4-hydroxybenzaldehyde, phenol, 4-chlorophenol, 4-methoxyphenol, 2-hydroxybenzaldehyde, and 4-acetamidophenol in 43 ~ 82% yields, respectively. The complex stability constants (K S) and thermodynamic parameters for the stoichiometric 1:1 and/or 1:2 complexes of benzo-15-crown-5 1 and double-armed crown ethers 3–8 with alkali cations (Na+, K+, Rb+) have been determined in methanol–water (V/V=8:2) at 25 °C by means of microcalorimetric titrations. As compared with the parent benzo-15-crown-5 1, double-armed crown ethers 3–8 show unremarkable changes in the complex stability constants upon complexation with Na+, but present significantly enhanced binding ability toward cations larger than the crown cavity by the secondly sandwich complexation. Thermodynamically, the sandwich complexations of crown ethers 3-8 with cations are mostly enthalpy-driven processes accompanied with a moderate entropy loss. The binding ability and selectivity of cations by the double-armed crown ethers are discussed from the viewpoints of the electron density, additional binding site, softness, spatial arrangement, and especially the cooperative binding of two crown ether molecules toward one metal ion.  相似文献   

5.
Artificial macrocyclic polyethers were synthesized and applied as neutral carriers for ion-selective PVC membrane electrodes, ion-chromatographic packing materials, extractants and adsorbents for ion separation, coating materials for piezoeletrical membrane sensors for organic species, and ion-transport carriers through liquid membranes. Ion-selective electrodes such as those for K+ Na+, UO22+, Cs+, Pb2+, Fe3+, Hg2+ and Ag+ ions based on crown ether-phosphotungstic acid (PW) precipitates and dithio crown ethers respectively were prepared and showed good sensitivity and selectivity. Crown ether-PW precipitates were applied as adsorbents of rare-earth ions and some common heavy-metal ions. Some rare-earth ions were easily extracted with crown ethers, especially 15-crown-5. Poly(stytene/divinyl benzene) cryptand-22 resin was synthesized and applied as a bifunctional stationary phase of ion chromatography to separate bom cations and anions, even some organic carboxylate geometric isomers. Crown ethers such as mono-benzo-15-crown-5 was successfully applied as a coating material on piezoelectric quartz membrane sensors for some organic species. The oscillation frequency of the crown-ether quartz-membrane sensor was sensitive to organic vapours such as amines and alcohols. Upon adsorption of organic species on the crown-ether quartz membrane, the oscillation frequency of the sensor decreased obviously. Special crown ether such as dibenzo-16-crown-5-oxyacetic acid, decyl-cryptand-22 and 1, 4-dihydro-pyridine-18-crown-5 were synthesized and successfully applied as ion-transport carriers (ionophores) for transport of Na+ K+ and Mg2+ ions through liquid membranes.  相似文献   

6.
The stability constants and the partial molal volume and isentropic partial molal compressibility changes of complex formation between cations and crown ethers in water at 25°C are presented. The cations involved are Na+, K+, Rb+, Cs+, Ca2+, and Ba2+, and the crown ethers are 12-crown-4, 15-crown-5, and 18-crown-6. Values of V of complex formation have been discussed in terms of two simple models, one based on the scaled particle theory, and the others on the Drude-Nernst continuum model. The results indicate that the charge of the potassium cation in 18-crown-6 is especially well screened from the water. On this basis hydration numbers of complexed cations have been calculated. This shows that the size of the cation compared to the crown ether hole is important for the contacts between complexed cations and water.  相似文献   

7.
A series of double-armed benzo-15-crown-5 lariats (3–8) have been synthesized by the reaction of 4′, 5′-bis(bromomethyl)-benzo-15-crown-5 (2) with 4-hydroxybenzaldehyde, phenol, 4-chlorophenol, 4-methoxyphenol, 2-hydroxybenzaldehyde, and 4-acetamidophenol in 43 ~ 82% yields, respectively. The complex stability constants (K S) and thermodynamic parameters for the stoichiometric 1:1 and/or 1:2 complexes of benzo-15-crown-5 1 and double-armed crown ethers 3–8 with alkali cations (Na+, K+, Rb+) have been determined in methanol–water (V/V=8:2) at 25 °C by means of microcalorimetric titrations. As compared with the parent benzo-15-crown-5 1, double-armed crown ethers 3–8 show unremarkable changes in the complex stability constants upon complexation with Na+, but present significantly enhanced binding ability toward cations larger than the crown cavity by the secondly sandwich complexation. Thermodynamically, the sandwich complexations of crown ethers 3-8 with cations are mostly enthalpy-driven processes accompanied with a moderate entropy loss. The binding ability and selectivity of cations by the double-armed crown ethers are discussed from the viewpoints of the electron density, additional binding site, softness, spatial arrangement, and especially the cooperative binding of two crown ether molecules toward one metal ion.Graphical Abstract Synthesis of Double-Armed Benzo-15-crown-5 and Their Complexation Thermodynamics with Alkali CationsYU LIU*, JIAN-RONG HAN, ZHONG-YU DUAN and HENG-YI ZHANG This revised version was published online in July 2005 with a corrected issue number.  相似文献   

8.
Bis-crown ethers in which the benzo-15-crown-5 units were linked to 1,1′-positions of metallocene (M = Fe or Ru) with amide, ester, or ? C? C? bonds were synthesized. Complexing ability of the compounds with alkali, alkali earth, and transition metal cations were measured by the solvent extraction method. The results showed that these crown ethers had high affinity toward alkali metal cations (Li+, Na+, K+, and Rb+) and heavy-metal cations (Ag+ and Tl+). The difference of complexing ability for metal cations between ferrocene and ruthenocene derivatives could not be detected significantly. The extractability of metallocene-bis-crown ethers for metal cations was more larger than that of the corresponding mono-crown ethers, and irregular increments of extractability were explained by assuming the existence of a mixture of 1:1 and 2:1 complexes.  相似文献   

9.
A number of N-alkylnitrobenzoaza-15-crown-5 with the macrocycle N atom conjugated with the benzene ring were obtained. The structural and complexing properties of these compounds were compared with those of model nitrobenzo- and N-(4-nitrophenyl)aza-15-crown-5 using X-ray diffraction, 1H NMR spectroscopy, and DFT calculations. The macrocyclic N atom of benzoazacrown ethers are characterized by a considerable contribution of the sp3-hybridized state and a pronounced pyramidal geometry; the crownlike conformation of the macrocycle is preorganized for cation binding, which facilitates complexation. The stability constants of the complexes of crown ethers with the NH4 +, EtNH3 +, Na+, K+, Ca2+, and Ba2+ ions were determined by 1H NMR titration in MeCN-d3. The most stable complexes were obtained with alkaline-earth metal cations, which is due to the higher charge density at these cations. The characteristics of the complexing ability of N-alkylnitrobenzoaza-15-crown-5 toward alkaline earth metal cations are comparable with analogous characteristics of nitrobenzo-15-crown-5 and are much better than those of N-(4-nitrophenyl)aza-15-crown-5.  相似文献   

10.
Novel 15-hydroxybenzomonothia-15-crown-5 containing the sulfur atom linked with the benzene ring and its S-oxide were synthesized. The stability constants for the complexes of the obtained benzocrown ethers and a reference 15-hydroxybenzo-15-crown-5 with Na, Ca, AgI, Cd, HgII, and PbII perchlorates were determined by 1H NMR titration. In MeCN-d3, the benzothiacrown ether demonstrates a high selectivity towards the thio- and oxothiophilic Hg2+ (logK 1 = 7.1) and Pb2+ ions (logK 1 = 7.4). In MeCN-d3-D2O mixtures, the stabilities of the most of complexes decrease sharply due to competitive hydration of the metal cations except for the “soft” Ag+ and Hg2+ ions having low affinity for the “hard” oxygen atoms and, on the contrary, very high affinity for the “soft” SII atoms. This results in the change in selectivity of complexation: at the water content in solution of 20%, the benzothiacrown ether binds preferably the Hg2+ (logK 1 = 5.0) and Ag+ ions (logK 1 = 2.7). In MeCN-d3, the benzothiacrown-derived sulfoxide is a weak and non-selective complexing agent towards all the metal cations under study; the reference 15-hydroxybenzo-15-crown-5 forms more stable complexes with the oxophilic sodium, calcium, and lead(ii) cations. The conformational features of the benzocrown ethers and their metal complexes established by NMR spectroscopy and X-ray diffraction are discussed. The found characteristics of the complexing ability of benzomonothia-15-crown-5 where the sulfur atom is in conjugation with the benzene ring reveal that the macrocyclic ligands with such a structure are promising as high-selective and efficient complexing agents for the “soft” mercury(ii) and silver(i) cations in acetonitrile-water mixtures.  相似文献   

11.
《Polyhedron》1999,18(8-9):1273-1278
A series of anionic chromium(III) thiocyanato complexes with metal crown ether cations have been prepared and characterized. These complexes have the form [Crown-M]2+[Cr(NCS)5(H2O)]2− and [Crown-M]3+[Cr(NCS)6]3−, where M=Na+, K+, or NH4+ and crown represents the crown ether. The crown ethers are 15-crown-5, B-15-crown-5, 18-crown-6, DB-18-crown-6, and DB-24-crown-8, where B- and DB- stand for benzo- and dibenzo-, respectively. The complexes are stable for at least 20 h in the dark in dimethylformamide(DMF) or in acetonitrile, and they release thiocyanate slowly, k=(0.71–2.67)×10−9 mol/(L s) in acetonitrile in the dark. Photoanation of thiocyanate was observed for the complexes in DMF and in acetonitrile. The quantum yields of thiocyanate release in DMF and in acetonitrile are reported. The quantum yields were in the range 0.05 to 0.52 mol einstein−1 and were solvent and wavelength dependent. In general, larger quantum yields were observed in DMF than in acetonitrile. The photoreaction mechanism is discussed.  相似文献   

12.
The complexation reaction of phenylaza-15-crwon-5, 4- nitrobenzo- 15-crown-5, and benzo-15-crown-5 with Ag+, Tl+ and Pb2+ ions in methanol solution have been studied by a competitive potentiometric method. The Ag+/Ag electrode used both as an indicator and reference electrode in a concentration cell. The emf of cell monitored as the crown ethers concentration varies through the titration. The stoichiometry and stability constants of resulting complexes have been evaluated by MINIQUAD. The stoichiometry for all resulting complexes was 1:1. The stability of these metal ions with derivatives of 15-crown-5 are in order phenylaza-15-crown-5 > Benzo-15-crown-5 > 4-nitrobenzo-15-crown-5, and for the each used crown ethers are as Pb2+ > Ag+ > Tl+. The effect of the substituted group on the stability of resulting complexes was considered. The obtained results are novel and interesting.  相似文献   

13.
The predominant participation of anions of sorbed electrolytes in electrical charge transfer in polymers was demonstrated based on measurement of the transport numbers of Li+, Na+, K+, Rb+, Cs+, Tl+, and NO3 ions through homogeneous polymer membranes containing dibenzo-18-crown-6 or dibenzo-24-crown-8. The coordination reaction of the cations with the crown ethers in the polymer phase is the cause of the decrease in the proportion of cations in electrical charge transfer.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 310–314, February, 1990.  相似文献   

14.
The alkali metal- and ammonium picrate extracting ability of d-glucose- and d-mannose-based 15-crown-5 ethers and related lariat ethers was investigated in dichloromethane – water system. A heteroatom was waried in the crown ether containing a 4,6-O-benzylidene-α-d-glucopyranoside unit 6, (X=O), 2 (X=S) and 8a (X=NH). Extracting ability of the latter species (8a) was excellent (97–99%) in regard of all cations (Li+, Na+, K+, Rb+, Cs+ and NH4+) examined, it was not, howewer, selective. Introduction of a side arm on the nitrogen atom of 8a decreased the extracting ability, but increased the selectivity. In this series of compounds (8bf, 4), 4 with a pyridylethyl substituent allowed the extraction of sodium picrate in 72%. The glucose-based macrocycles 8a, 8e and 8f formed a stronger complex with the cations examined than the mannose-based analogues 9a, 9e and 9f, that can be explained by the all-gauche conformation of the former ones. It was pointed out that in the case of crowns with tertiary amine moieties, the basicity increases the quantity of the picrates extracted. According to complex forming measurements by FAB-MS, the best sodium ion selectivity was achieved by the γ-hydroxypropyl substituted lariat ether (8e). Possible structures of the complexes formed by the two types of monosacharides with sodium cation were evaluated by molecule modelling calculations.  相似文献   

15.
The condensation reaction of 1,2-bis(2-haloethoxy)-4-nitrobenzenes with acyclic α,ω-(oxa)alkanedithiols in the presence of alkali metal carbonates produced a series of nitrobenzodithiacrown ethers with macrocycles of different size. The structures of three ethers were established by X-ray diffraction. A new method was developed for the synthesis of nitrobenzomonothia-15-crown-5 ether. Nitro derivatives of benzodithiacrown ethers were tested as reagents for extraction of palladium(II), platinum(IV), and rhodium(III) from hydrochloric acid solutions. Extraction of PdII salts was found to be highly selective compared to that of PtIV and RhIII salts. Benzodithia-15-crown-5 ether is the most efficient extractant for palladium(II). Reduction of nitrobenzothiacrown ethers with hydrazine hydrate in the presence of a platinum catalyst afforded their amino derivatives. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 958–966, May, 2007.  相似文献   

16.
The application of laboratory-made aluminium-adsorbing silica gel (Al-Silica) as a cation-exchange stationary phase to ion chromatography-indirect photometric detection (IC-IPD) for common mono- and divalent cations (Li+, Na+, NH+, K+, Mg2+ and Ca2+) was carried out by using protonated tyramine (4-aminoethylphenol) as eluent ion. When using 1.2 mM tyramine-0.2 mM oxalic acid at pH 4.5 as eluent, incomplete separation of the monovalent cations and complete separation of the divalent cations were achieved in 17 min. Then, the addition of crown ethers in the eluent was carried out for the complete separation of the mono- and divalent cations. As a result, when using 1.2 mM tyramine--0.2 mM oxalic acid at pH 4.5 containing either 5 mM 15-crown-5 (1,4,7,10,13-pentaoxacyclopentadecane) or 0.5 mM and 18-crown-6 (1,4,7,10,13,16-hexaoxacyclooctadecane) as eluent, excellently simultaneous separation of these cations was achieved in 21 min. The proposed IC-IPD was successfully applied to the determination of major cations in natural water samples.  相似文献   

17.
The modification of silica gel with aluminium by a coating method was very effective for the preparation of silica-based stationary phases which acted as a cation exchanger under strongly acidic conditions. However, the separation of common mono- and divalent cations (Li+, Na+, NH4+, K+, Mg2+ and Ca2+) on an aluminium-adsorbing silica (Al-Silica) column was moderate by a conductimetric detection ion chromatography (IC) with strongly acidic eluents. Then, the addition of various crown ethers (12-crown-4, 15-crown-5 and 18-crown-6) in acidic eluent was carried out. As a result, it was found that 15-crown-5 was most effective for the improvement of peak resolution. Excellent separation of these cations was achieved in 20 min by elution with 2 mM nitric acid–2 mM 15-crown-5. The proposed IC was successfully applied to the determination of major cations in various natural waters.  相似文献   

18.
Novel fluorescent ionophores bearing imidazo-arylthienyl or imidazo-bithienyl π-conjugated bridges functionalized with one or two fused benzo-15-crown-5 ethers as receptor units are reported. The sensing ability of the compounds in the presence of metallic cations (Li+, Na+, K+, Ca2+, Zn2+, Cu2+, Ni2+, Pd2+, and Hg2+) and fluoride ion was studied in MeCN/DMSO solutions by absorption and emission spectroscopy. The experimental results indicate that all compounds could act as selective fluorimetric sensors for Cu2+ and Pd2+ and also for the fluoride ion, in the case of the bis-substituted crown ether derivatives.  相似文献   

19.
Seiichi Inokuma 《Tetrahedron》2004,60(9):2043-2050
Biscrown ethers 2a-c and 3a-c arranged at a cyclobutane ring were prepared by intermolecular [2+2] photocycloaddition of vinylated benzocrown ethers. The complexing behavior of 2a-c toward alkali metal cations was evaluated by ESI-MS analysis, liquid-liquid extraction, and the comparison of complexing stability constant. An intramolecular sandwich-type 1:1 (host/guest) complexation was observed by ESI-MS analysis in the competitive system where 2a-Na+, 2b-K+, and 2c-Cs+ were formed selectively. In the liquid-liquid extraction, however, 2a hardly extracted any cation, while both 2b and 2c efficiently extracted larger cations such as K+, Rb+, and Cs+. It was found that the complexing stability constant of 2a-Na+ is lower than that of benzo-15-crown-5-Na+ though extraordinarily high values were obtained for 2b-K+ and 2c-Cs+ complexes compared with those of 18-crown-6-K+ and dibenzo-24-crown-8-Cs+ complexes, respectively. Hence, the excellent complexing ability was achieved by using the cyclobutane ring, which strongly preorganized two benzocrown-ether moieties for the larger alkali metal cations.  相似文献   

20.
Several mono-and bis(benzo-18-crown-6) ethers comprising o-nitrophenyl urethanemoieties were synthesized and studied as ionophores in PVC membrane electrodes. Thebis(crown ether)s were found to exhibit good potentiometric Cs+ selectivity overmono and divalent cations as compared to the respective mono(crown ether)s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号