首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, INU, a natural polysaccharide, has been chemically modified in order to obtain new photocrosslinkable derivatives. To reach this goal, INU has been derivatized with MA thus obtaining four samples (INU-MA derivatives) as a function of the temperature and time of reaction. An aqueous solution of the derivative INU-MA1 was irradiated by using a UV lamp with an emission range from 250 to 364 nm and without using photoinitiators. The obtained hydrogel showed a remarkable water affinity but it underwent a partial degradation in simulated gastric fluid. To overcome this drawback, INU-MA1 was derivatized with SA thus obtaining the INU-MA1-SA derivative designed to produce a hydrogel showing a low swelling and an increased chemical stability in acidic medium. Ibuprofen, as a model drug, was loaded by soaking into INU-MA1 and INU-MA1-SA hydrogels and its release from these matrices was evaluated in simulated gastrointestinal fluids. INU-MA1 hydrogel showed the ability to quickly release the entrapped drug thus indicating its potential as a matrix for an oral formulation. INU-MA1-SA hydrogel showed a pH-responsive drug delivery. Therefore it is a promising candidate for controlled drug release in the intestinal tract.  相似文献   

2.
A hyaluronic acid‐based anionic nanogel formed by self‐assembly of cholesteryl‐group‐bearing HA is designed for protein delivery. The HA nanogel spontaneously binds various types of proteins without denaturation, such as recombinant human growth hormone, erythropoietin, exendin‐4, and lysozyme. The HA nanogel shows unique colloidal properties, in particular that an injectable hydrogel is formed by salt‐induced association of the HA nanogel. A pharmacokinetic study in rats shows that an in situ gel formulation, prepared by simply mixing rhGH and HA nanogel in phosphate buffer, maintains plasma rhGH levels within a narrow range over one week. Therefore, HA nanogels offer a simple method for easy formulation of therapeutic proteins and are effective for sustained protein release systems.

  相似文献   


3.
Hydrogels are promising for a variety of medical applications due to their high water content and mechanical similarity to natural tissues. When made injectable, hydrogels can reduce the invasiveness of application, which in turn reduces surgical and recovery costs. Key schemes used to make hydrogels injectable include in situ formation due to physical and/or chemical cross‐linking. Advances in polymer science have provided new injectable hydrogels for applications in drug delivery and tissue engineering. A number of these injectable hydrogel systems have reached the clinic and impact the health care of many patients. However, a significant remaining challenge is translating the ever‐growing family of injectable hydrogels developed in laboratories around the world to the clinic. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

4.
Polysaccharide‐based thermo‐responsive material was prepared by grafting PNIPAAm onto hybrid alginate beads, in which a biomineralized polyelectrolyte layer was constructed aiming to enhance the mechanical strength and ensure higher graft efficiency. XPS results demonstrated that the incorporation of PNIPAAm to the hybrid beads was successful, and the PNIPAAm‐grafted beads were more hydrophilic than the ungrafted ones as indicated by their swelling behavior. The drug release behaviors revealed that the grafted beads were both thermo‐ and pH‐sensitive, and the PNIPAAm existed in the pores of the alginate beads acted as the “on–off” gates: the pores of the beads were covered by the stretched PNIPAAm to delay the drug release at 25°C and opened to accelerate the drug release at 37°C because of the shrinking of PNIPAAm molecules. This paper would be a useful example of grafting thermo‐responsive polymers onto biodegradable natural polymer substrate. The obtained beads provide a new mode of behavior for thermo‐responsive “smart” polysaccharide materials, which is highly attractive for targeting drug delivery system and chemical separation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Intelligent polymers or stimuli-responsive polymers may exhibit distinct transitions in physical-chemical properties, including conformation, polarity, phase structure and chemical composition in response to changes in environmental stimuli. Due to their unique 'intelligent' characteristics, stimuli-sensitive polymers have found a wide variety of applications in biomedical and nanotechnological fields. This review focuses on the recent developments in biomedical application of intelligent polymer systems, s...  相似文献   

6.
张俐娜 《高分子科学》2017,35(10):1165-1180
This review summarizes recent progress of the robust and smart hydrogels prepared from natural polymers including polysaccharides,proteins,etc.These hydrogels exhibit outstanding mechanical properties due to their nanofibrous aggregated microstructures and special crosslinking networks.Furthermore,these hydrogels show some smart stimuliresponsive behaviors triggered by pH,temperature,light,electricity and magnetism.Hopefully,these hydrogels derived from natural polymers with inherent biodegradation and biocompatibility have great application potential in the fields of biomedicine,tissue engineering,soft robots and bio-machine.  相似文献   

7.
Degradable hydrogels crosslinked with disulfide bonds were prepared by Michael addition between amine groups of branched polyethylenimine and carbon–carbon double bonds of N,N′‐bis(acryloyl)cystamine. The influences of the chemical composition of the resulted hydrogels on their properties were examined in terms of morphology, surface area, swelling kinetics, and degradation. The hydrogels were uniformly crosslinked and degraded into water‐soluble polymers in the presence of the reducing agent of dithiothreitol, which improved the control over the release of encapsulated drug. The degradation of hydrogels can trigger the release of encapsulated molecules, as well as facilitate the removal of empty vehicles. Results obtained from in vitro drug release suggested that the disulfide crosslinked hydrogels exhibited an accelerated release of encapsulated drug in dithiothreitol‐containing PBS buffer solution. Moreover, the drug release rate decreased gradually with increasing crosslinking density. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4074–4082, 2009  相似文献   

8.
Nanocomposite hydrogels based on carbon dots(CDs) and polymers have emerged as new materials with integrated properties of individual components,leading to their important applications in the field of soft nanomaterials.This perspective highlights recent advances in the development of nanocomposite hydrogels from CDs and polymers.We review the preparation methods of nanocomposite hydrogels based on CDs and polymers,and emerging applications of these nanocomposite hydrogels such as environmental ...  相似文献   

9.
Temperature‐responsive hydrogels are one of the most widely studied types of stimuli‐responsive hydrogel systems. Their ability to transition between their swollen and collapsed states makes them attractive for controlled drug delivery, microfluidic devices, and biosensor applications. Recent work has shown that poly(ethylene glycol) (PEG) methacrylate polymers are temperature‐responsive and exhibit a wide range of lower critical solution temperatures based on the length of ethylene glycol units in the macromer chain. The addition of iron oxide nanoparticles into the hydrogel matrix can provide the ability to remotely heat the gels upon exposure to an alternating magnetic field (AMF). In this work, diethylene glycol (n = 2) methyl ether methacrylate and PEG (n = 4.5) methyl ether methacrylate copolymers were polymerized into hydrogels with 5 mol % PEG 600 (n = 13.6) dimethacrylate as the crosslinker along with 5 wt % iron oxide nanoparticles. Volumetric swelling studies were completed from 22 to 80 °C and confirmed the temperature‐responsive nature of the hydrogel systems. The ability of the gels to collapse in response to rapid temperature changes when exposed to an AMF was demonstrated showing their potential use in biomedical applications such as controlled drug delivery and hyperthermia therapy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3229–3235, 2010  相似文献   

10.
A pH and reduction dual‐stimuli‐responsive PEGDA/PAMAM injectable network hydrogel containing “acetals” as pH‐sensitive groups and “disulfides” as reducible linkages was designed and synthesized via aza‐Michael addition reaction between PAMAM and PEGDA diacrylates. The pore size and swelling ratio of hydrogels was varied from 14 ± 3 to 19 ± 4 μm and 214 ± 13 to 300 ± 19 μm, respectively, with varying ethylene glycol repeating units in diacrylates. The swelling ratio of PEGDA/PAMAM network hydrogel increased with increase in the molecular weight of PEG and with decrease in pH. The presence of different cationizable amino‐functionalities in PEGDA/PAMAM network hydrogel helped to enhance the swelling ability of hydrogel under the acidic conditions. The continuous increase in metabolically active live HeLa cells with time in MTT assay implied biocompatibility/noncytotoxicity of the synthesized PEGDA/PAMAM injectable network hydrogel. Furthermore, the prepared PEGDA/PAMAM hydrogel showed higher degradation at lower pH and at higher concentration of DTT. The burst release of doxorubicin from PEGDA/PAMAM hydrogel under the environment of the lower pH and in presence of DTT compared to the release at normal physiological pH and in absence of DTT suggested the potential ability of this model hydrogel system for targeted and selective anticancer drug release at tumor tissues. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2080–2095  相似文献   

11.
Reducibly degradable hydrogels of poly(N‐isopropylacrylamide) (PNIPAM) and poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) were synthesized by the combination of reversible addition‐fragmentation chain transfer (RAFT) polymerization and click chemistry. The alkyne‐pending copolymer of PNIPAM or PDMAEMA was obtained through RAFT copolymerization of propargyl acrylate with NIPAM or DMAEMA. Bis‐2‐azidyl‐isobutyrylamide of cystamine (AIBCy) was used as the crosslinking reagent to prepare reducibly degradable hydrogels by click chemistry. The hydrogels exhibited temperature or pH stimulus‐responsive behavior in water, with rapid response, high swelling ratio, and reproducible swelling/shrinkage cycles. The loading and release of ceftriaxone sodium proved the feasibility of the hydrogels as the stimulus‐responsive drug delivery system. Furthermore, the presence of disulfide linkage in AIBCy favored the degradation of hydrogels in the reductive environment. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3604–3612, 2010  相似文献   

12.
Frontal polymerization (FP) is applied for the synthesis of β‐cyclodextrin/poly(vinylimidazole‐co‐N‐vinylcaprolactam‐co‐acrylic acid) (β‐CD/P(VI‐co‐NVCL‐co‐AA)) copolymers. The dependence of frontal velocity and temperature on the initiator and cross‐linker are discussed. The synthesized copolymers have been characterized by Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The thermo‐pH dual‐stimuli responsive behavior of the hydrogel is determined by swelling measurement at different temperatures and pH values. Besides, the hydrogels show intrinsic self‐healing behavior and their healing efficiency is determined by the mechanical tests. Interestingly, we integrate FP with microfluidic technology, which may realize the execution of FP under continuous condition. Such simple microfluidics‐FP integrated approach has both methodological and practical value for the synthesis of functional materials. This paper mainly presents the synthesis and characterization of β‐cyclodextrin/poly(vinylimidazole‐co‐N‐vinylcaprolactam‐co‐acrylic acid) (β‐CD/P(VI‐co‐NVCL‐co‐AA)) copolymers by using thermal frontal polymerization (TFP). Hydrogels were found to be self‐healing with good mechanical performance and show dual thermo‐pH responsive behavior. Low‐cost, energy‐saving and efficient method of thermal frontal polymerization process was integrated with microfluidics technology to prepare supraball hydrogel. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1412–1423  相似文献   

13.
In order to obtain dual‐stimuli‐responsive (temperature/pH) alginate beads that exhibit LCST close to human body temperature for sustained drug release applications, poly (NIPAAm‐co‐AAm) hydrogel (with LCST 37.5°C) were selected and associated with calcium alginate to prepare inorganic–organic hybrid biomineralized polysaccharide alginate beads via a one‐step method in this paper. Scanning electron microscopy (SEM) and energy dispersive X‐ray spectrometer (EDS) results demonstrated that calcium phosphate could not only be found in the surface but also in the cross‐section of biomineralized polysaccharide beads. Both equilibrium swelling and indomethacin release behavior were found to be pH‐ and thermo‐responsive. In addition, indomethacin release profile could be sustained with a inorganic–organic hybrid membrane: the release amount reached 96% within 4 hr for the unmineralized beads, while a drug release of only 64% obtained after subjecting the biomineralized polysaccharide beads to the same treatment. These results indicate that the biomineralized polysaccharide membrane could prevent the permeability of the encapsulated drug and reduce the drug release rate effectively. The studied system has the potential to be used as an effective smart sustainable delivery system for biomedical applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The thermo‐responsiveness, swelling and mechanical properties of a series of novel poly(ester‐ether urethane) hydrogels have been investigated. These thermo‐sensitive hydrogels were obtained by combining hydrophobic biodegradable poly(ε‐caprolactone) diols and hydrophilic two‐, three‐ and four‐arm hydroxyl terminated poly(ethylene glycol) (PEG) of various molecular weights, using hexamethylene diisocyanate, dichloroethane as solvent and a tin‐based catalyst. The use of multifunctional PEGs leads to the formation of covalent crosslinking points allowing an additional control of the swelling capability. Thus, it was found that tuning the hydrophilic/hydrophobic balance and the crosslinking degree by changing the composition, the swelling and the thermo‐responsive behavior of these hydrogels could be modulated. The obtained hydrogels showed a volume transition at around room temperature. Therefore, and taking into account their biocompatibility, these hydrogels show promising properties for biomedical applications, such as drug delivery. Thus, the loading and release of diltiazem hydrochloride, an antihypertensive drug used as model, were investigated. These new PEG polyurethane hydrogels were able to incorporate a high amount of drug providing a sustained release after an initial burst effect. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Reactive oxygen, nitrogen, and sulfur species (RONSS) are cross‐reacting and involved in a myriad of physiological and pathological processes. Similar to acidic pH, overexpressed enzymes, and other specific stimuli found in pathological microenvironments, RONSS are recognized as a category of emerging triggering events and have been employed to design activatable theranostic nanomaterials. In this regard, a plethora of RONSS‐responsive nanovectors including polymeric micelles and vesicles (also referred to as polymersomes) are constructed. In comparison with micelles, polymersomes comprising aqueous interiors enclosed by hydrophobic membranes show intriguing applications in synergistic delivery of both hydrophobic and hydrophilic drugs, nanoreactors, and artificial organelles. This feature article focuses on the recent developments in the fabrication of RONSS‐responsive polymersomes and their potential biomedical applications in terms of triggered drug delivery.

  相似文献   


16.
Degrading hydroxyethylmethacrylate‐grafted dextran (dex‐HEMA) hydrogels generate a relatively sudden increase in osmotic pressure upon degradation into dextran solutions. This phenomenon is currently being examined as a possible means of developing a pulsatile drug‐delivery system. Here a mathematical model based on scaling concepts is presented to describe this sudden increase in swelling pressure and to provide a framework for the rational design of pulsatile delivery systems based on this phenomena. The model provides a good fit to the swelling pressures measured for dex‐HEMA gel/free dextran mixtures that simulate degrading dex‐HEMA gels. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3397–3404, 2004  相似文献   

17.
Light‐responsive polymers with controllable, reversible crosslink mechanisms have the potential to create unique biomaterials with stimulus‐controlled swelling, degradation and diffusion properties useful in tissue engineering and drug delivery applications. Generic photodimerizing polyethylene glycol–anthracene macromolecules that may be grafted to various polymers to effectively control their crosslinking via a photodimerization mechanism have been developed. These generic crosslinkers were shown to effectively introduce photoresponsive properties into hyaluronate and alginate as model hydrophilic polymers. In vitro testing using human corneal epithelial cells was used to demonstrate cytocompatibility of the resulting photogels. The effective crosslinking density of the photogels could be increased resulting in a decrease in the release rate of small and large molecules from the photogels following exposure to 365 nm light. This tuneable crosslinking has the potential to manipulate the delivery rates of therapeutics resulting in control over treatment profiles and may lend itself to various applications, which may benefit from light induced changes in crosslinking.

  相似文献   


18.
The present work is focused on investigating the behavior of controlled drug release poly(N-isopropylacrylamide) (PNIPA) hydrogels in the presence of beta-cyclodextrin (beta-CD). For this purpose, three types of NIPA hydrogels with beta-CD moieties were synthesized with different architectures according to our previous studies. An anti-cancer drug (chlorambucil, CLB), which can form an inclusion complex with beta-CD, was selected for loading and in vitro release studies. The drug was loaded into hydrogels via a swelling method. DSC was used to study the interactions between the CLB molecules and the polymers. The results indicate that the CLB-polymer interactions are at the molecular level. Loading CLB into these polymers can result in an evident decrease in the glass transition temperature (T(g)), and the variation of T(g) (DeltaT(g)) depends on the structures of the polymers and their beta-CD content. The controlled release experiments show that the presence of beta-CD can markedly enhance CLB release from shrunken PNIPA hydrogels and increase the ratio of CLB released in total drug loading content. Release profile of CLB from hydrogels 1a-c and 4 at pH 1.4 and 7.4, at 37 degrees C.  相似文献   

19.
A novel type of pH- and thermo-responsive copolymer, chitosan-graft-poly(N-vinylcaprolactam) (chitosan-g-PNVCL), was prepared by grafting carboxyl-terminated poly(N-vinylcaprolactam) (PNVCL-COOH) chains onto a chitosan backbone as a drug-delivery carrier. The formation of chitosan-g-PNVCL was confirmed by FT-IR and 1H NMR techniques. Chitosan-g-PNVCL showed a definite phase transition at 32 degrees C as occurs in pure PNVCL. The swelling degree of the chitosan-g-PNVCL beads was found to be higher at pH 2.2 than at pH 7.4. Moreover, the swelling degree of the beads decreased with increased environmental temperature. Compared to the chitosan beads, the release profile of chitosan-g-PNVCL beads showed a slower and more controlled release of the entrapped ketoprofen. The release behavior of the chitosan-g-PNVCL beads was influenced by both the pH and temperature of the medium. The MTT assay showed no obvious cytotoxicity of chitosan-g-PNVCL against a human endothelial cell line over a concentration range of 0-400 microg x mL(-1). These results suggest that chitosan-g-PNVCL could be a potential stimuli-responsive material for controlled drug delivery, and it may improve the bioavailability, efficacy, and compliance of the encapsulated drugs. [Reaction: see text].  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号