首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Seventy-six molecules of biological interest for the diagnosis of inherited disorders of amino acids (AA) metabolism have previously been demonstrated to be detectable in electrospray ionization tandem mass spectrometry (ESI-MS/MS) positive mode without derivatization. Reversed-phase liquid chromatography (RPLC) separation on different C18 columns using various perfluorinated carboxylic acids as ion-pairing agents has been found suitable for coupling with MS/MS, and for the separation of AA. A new procedure was optimized in order to replace the usual ion-exchange chromatographic, post-column ninhydrin derivatization, time-consuming routine method. This procedure allowed an adequate separation of all the molecules from other known interfering compounds, and a throughput of two samples per hour. Quantification limits for each molecule were found to be compatible with their measurement in plasma and urine. We validated the qualitative part of the method by analyzing plasma and urine samples from patients affected with several inherited disorders of AA metabolism. We validated the quantification of 16 AA using their stable isotopes as internal standard. The calibration curves were linear over the range 0-3 mM. The quantitative results obtained with the new method on 105 plasma and 99 urine samples were in good agreement with those obtained by the established routine method. Spiking experiments and precision results were also satisfactory.  相似文献   

2.
Seventy-six compounds of biological interest for the diagnosis of inherited disorders of amino acids (AA) metabolism have previously been demonstrated to be detectable in positive mode electrospray ionisation tandem mass spectrometry (ESI-MS/MS), after separation by ion-pairing reversed-phase liquid chromatography (RPLC). The separation method used tridecafluoroheptanoic acid as ion-pairing agent, and a gradient of acetonitrile for the elution of the most retained compounds. This method had previously been demonstrated to be suitable for the qualitative diagnosis of many AA disorders, and for the quantitative measurement of 16 AA in biological fluids, using their stable isotope labelled (SIL) AA as internal standard. For quantification of the other AA, an internal standard was chosen among the available SIL-AA, as close as possible to the analyte to be measured, in terms of structural analogy, and of retention time in the chromatographic system. The performances of the quantitative analysis of the other AA to be measured are reported here. They show validated results for several AA, allowing their accurate quantification, with another SIL-AA as internal standard. For some other AA, quantitative results were not accurate, allowing only semi-quantitative or qualitative determination for these parameters.  相似文献   

3.
A rapid, sensitive, and widely applicable method for the simultaneous quantitative analysis of 20 underivatized amino acids in different biological matrices, including serum, plasma, and tissue homogenates, using ultra high performance liquid chromatography with tandem mass spectrometry was developed and validated. Only 4 µL of serum, plasma, or tissue homogenate was extracted with 996 µL of solution (1.7 mM ammonium formate in 85% acetonitrile containing 0.1% formic acid) containing 100 ng/mL phenylalanine‐d5 as an internal standard without any further derivatization step. In addition, the matrix effects were small because a large volume of extraction solution was used. The total run time including reequilibration was 13 min. The results of linearity, accuracy, repeatability, precision, limits of detection, limits of quantification, and sample stability were sufficient to allow the measurement of the amino acids in different biological matrices. We conclude that our method is rapid, sensitive, and widely applicable and represents an improvement over other currently available technologies.  相似文献   

4.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号