首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[M+Ag]+ ions were produced by electrospray from neutral high-mannose, hybrid and complex N-linked glycans obtained from bovine ribonuclease, chicken egg glycoproteins, bovine fetuin and porcine thyroglobulin by the addition of silver nitrate to the electrospray solvent. Both singly and doubly charged ions were produced but, as the signals were split between the two silver isotopes, sensitivity was not as high as with the sodium adducts reported earlier. Collision-induced dissociation (CID) spectra were dominated by ions produced by glycosidic cleavages, mainly of the B- and Y-type. Internal cleavage ions involving both B and Y cleavages were very prominent but cross-ring fragments were generally of very low abundance or absent. Silver was very efficient at cleaving the glycosidic bonds, so much so that spectra tended to contain glycosidic ions at most possible combinations of the constituent monosaccharides.  相似文献   

2.
The electrospray mass spectra and collision-induced fragmentation of neutral N-linked glycans obtained from glycoproteins were examined with a Q-TOF mass spectrometer. The glycans were ionized most effectively as adducts of alkali metals, with lithium providing the most abundant signal and caesium the least. Singly charged ions generally gave higher ion currents than doubly charged ions. Addition of formic acid could be used to produce [M + H]+ ions, but these ions were always accompanied by abundant cone-voltage fragments. The energy required for collision-induced fragmentation was found to increase in a linear manner as a function of mass with the [M + Na]+ ions requiring about four times as much energy as the [M + H]+ ions for complete fragmentation of the molecular ions. Fragmentation of the [M + H]+ ions gave predominantly B- and Y-type glycosidic fragments whereas the [M + Na]+ and [M + Li]+ ions produced a number of additional fragments including those derived from cross-ring cleavages. Little fragmentation was observed from the [M + K]+ and [M + Rb]+ ions and the only fragment to be observed from the [M + Cs]+ ion was Cs+. The [M + Na]+ and [M + Li]+ ions from all the N-linked glycans gave abundant fragments resulting from loss of the terminal GlcNAc moiety and prominent, though weaker, ions as the result of 0,2A and 2,4A cross-ring cleavages of this residue. Most other ions were the result of successive additional losses of residues from the non-reducing terminus. This pattern was particularly prominent with glycans containing several non-reducing GlcNAc residues where successive losses of 203 u were observed. Many of the ions in the low-mass range were products of several different fragmentation routes but still provided structural information. Possibly of most diagnostic importance was an ion formed by loss of 221 u (GlcNAc molecule) from an ion that had lost the 3-antenna and the chitobiose core. This latter ion, although coincident in mass with some other 'internal' fragments, often provided additional information on the composition of the antennae. Other ions defining antenna composition were weak cross-ring fragments produced from the core branching mannose residue. Glycans containing Gal-GlcNAc residues showed successive losses of this moiety, particularly from the B-type fragments resulting from loss of the reducing-terminal GlcNAc residue. The [M + Na]+ and [M + Li]+ ions from high-mannose and hybrid glycans gave a series of ions of composition (Man)nNa/Li+ where n = 1 to the total number of glycans in the molecule, allowing these sugars to be distinguished from the more highly processed complex glycans. Other ions in the spectra of the high-mannose glycans were diagnostic of chain branching but insufficient information was available to determine their mode of formation.  相似文献   

3.
The use of electrospray ionization (ESI) quadrupole ion trap mass spectrometry and reversed-phase high-performance liquid chromatography (HPLC) for the characterization of 2-aminobenzamide (2AB)-labeled oligosaccharides and N-linked protein oligosaccharide mixtures is described. The major signals were obtained under these conditions from the [M+Na]+ ions for all 2AB-derivatized oligosaccharides. Under collision-induced dissociation, sodiated molecular species generated in the ESI mode yield simple and predictable mass spectra. Tandem mass spectrometry (MS/MS) experiments with orders higher than two offer a number of ways to enhance MS/MS spectra and to derive information not present in MS and MS2 spectra. Information on composition, sequence, branching and, to some extent, interglycosidic linkages can be deduced from fragments resulting from the cleavage of glycosidic bonds and from weak cross-ring cleavage products. Reversed-phase HPLC and derivatization by reductive amination using 2-aminobenzamide were finally applied to characterize a glycan pool enzymatically released from glycoproteins.  相似文献   

4.
Electrospray mass spectrometry of   总被引:1,自引:0,他引:1  
There has been a substantial growth in the application of mass spectrometry (MS) methods for the analysis of inorganic materials, due to the inherent sensitivity of mass spectrometry ionization to the specific composition and structure of the analyzed materials. To date, few mass spectrometry studies have focused on metal-chalcogenide materials, an important class of semiconductor materials at the nanoscale, that exhibit interesting optical and electronic properties as a function of size. In this study, we report the application of a correlated electrospray mass spectrometry (ESMS) study between negative-ion and positive-ion mode under low-cone voltage to probe size, composition, and stability of metal-chalcogenide materials at the <1 nm scale. This correlation approach provides insight into the ionization behavior and thermodynamic stability of clusters in the <1.0 nm size domain of the form [Zn4(SPh)10][Me4N]2, [Cd4(SPh)10][Me4N]2, [E4Zn10(SPh)16][Me4N]4, [E4Cd10(SPh)16][Me4N]4 (E = S, Se). It is demonstrated that application of low-cone voltage ESMS can be a useful technique for the rapid analysis of intact solid state nanomaterials when both negative and positive ionic modes are analyzed, with a potential for extrapolation to other classes of nanoscale materials.  相似文献   

5.
The ionization and fragmentation behaviors of carbohydrate derivatives prepared by reaction with 2-aminobenzamide (AB), 1-phenyl-3-methyl-5-pyrazolone (PMP), and phenylhydrazine (PHN) were compared under identical mass spectrometric conditions. It has been shown that the intensities of signals in MS spectra depend on the kind of saccharides investigated and reducing end labels used. PMP sialyllactose, when ionized by ESI/MALDI, produced a mixture of [M + H]+, [M + Na]+, [M - H + 2Na]+ ions in the positive mode and [M - H]-, [M + Na - 2H]- ions in the negative mode. The AB and PHN derivatives formed abundant [M + H]+ and [M - H]- ions in ESI, and by matrix-assisted laser desorption/ionization (MALDI) produced abundant [M + Na]+ ions. PMP- and reduced AB-sialyllactose produced only Y-type fragment ions under both MS/MS sources. In the electrospray ionization (ESI)-MS/MS spectrum of PHN-sialyllactose, abundant ions corresponded to B, Z cleavages and in its MALDI-MS/MS spectrum, the abundant ions were consistent with Y glycosidic cleavages with the concurrence of B, C, and cross-ring fragment ions. In the MALDI-MS spectra of oligosaccharides acquired immediately after derivatization, it was possible to detect only PHN derivatives. After purification, spectra of all three types of derivatives showed high signal-to-noise ratios with the most abundant ions observed for AB reduced saccharides. [M + Na]+ ions were the dominant products and their fragmentation patterns were influenced by the type of the labeling and the kind of oligosaccharide considered. In the MALDI-PSD and -MS/MS spectra of AB-derivatized glycans, higher m/z fragment ions corresponded to B and Y cleavages and the loss of bisecting GlcNAc appeared as a weak signal or was not detected at all. Fragmentation patterns observed in the spectra of hybrid/complex PHN and PMP glycans were more comparable-higher m/z fragments corresponded to B and C glycosidic cleavages. For PHN glycans, the abundance of ions resulting from the loss of bisecting GlcNAc depended on the number of residues linked to the 6-positioned mannose. Also, PHN and PMP derivatives produced cross-ring cleavages with abundances higher than observed in the spectra of AB derivatized oligosaccharides. For high-mannose glycans, the most informative cleavages were provided by AB and PHN type of labeling. Here, PMP produced dominant Y-cleavages from the chitobiose while other ions produced weak signals.  相似文献   

6.
N-linked glycans were released from chicken ovalbumin by hydrazinolysis and examined by matrix-assisted laser desorption/ionization mass spectrometry. Postsource decay analysis showed that most fragment ions arose as the result of internal glycosidic cleavages involving loss of nonreducing terminal residues from ions that had lost one or both GlcNAc residues from the chitobiose core [GlcNAcbeta(1 --> 4)GlcNAc]. Cross-ring fragments were abundant from the reducing-terminal GlcNAc but other cross-ring fragments were weak. The ion found to be most useful for determining the composition of the antennae attached to the 3- or 6-linked core mannose residues was an internal cleavage ion formed by loss of both the chitobiose core and the antenna linked to the 3-position of the core branching mannose. This ion was observed to lose water in the absence of a "bisecting" GlcNAc residue (beta1 --> 4 linked to the core mannose) and to lose a GlcNAc molecule (221 mass units) when a bisecting GlcNAc residue was present.  相似文献   

7.
The fragmentation patterns of closely related chalcones, cinnamoylchromans and cinnamoylchromenes, are reported to be strikingly different. The mass spectra of the first group show peaks typical of the fragmentation of simple chalcones balanced by additional fragmentation routes competing effectively with the typical chalcone fragmentation. For the other group with the introduced double bond the fragmentation is considerably changed. Initial loss of a methyl group gives rise to formation of the base peak in three of four examples. The [M – CH3]+ ion decomposes further, eliminating a styrene yielding the m/z 187 ion. This process may be rationalized as a retro-Diels–Alder fragmentation of a flavanone formed on intramolecular rearrangement of the molecular ion.  相似文献   

8.
Maltoheptaose and several N-linked glycans were ionized by electrospray as adducts with the divalent cations Mg2+, Ca2+, Mn2+, Co2+ and Cu2+. [M + metal]2+ ions were the major species in all cases with calcium giving the highest sensitivity. In addition, copper gave [M + Cu]+ ions. Other cations gave singly charged ions only by elimination of a protonated monosaccharide. Fragmentation of the [M + metal]2+ ions produced both singly and doubly charged ions with the relative abundance of doubly charged ions decreasing in the order Ca > Mg > Mn > Co > Cu. Singly charged ions were formed by elimination of a protonated monosaccharide residue followed, either by successive monosaccharide residue losses, or by a 2,4A cross-ring cleavage of the reducing-terminal monosaccharide. Formation of doubly charged fragments from [M + metal]2+ ions involved successive monosaccharide-residue losses either with or without O,2A or 2,4A cross-ring cleavages of the reducing-terminal monosaccharide. Abundant diagnostic doubly charged ions formed by loss of the 3-antenna from the O,2A cross-ring product were specific to [M + Ca]2+ ions. Fragmentation of [M + Cu]+ ions was similar to that of the corresponding [M + H]+ ions in that most cross-ring fragments were absent.  相似文献   

9.
N-Linked glycans from bovine ribonuclease B, chicken ovalbumin, bovine fetuin, porcine thyroglobulin and human alpha(1)-acid glycoprotein were derivatized with 2-aminobenzoic acid by reductive amination and their tandem mass spectra were recorded by negative ion electrospray ionization with a quadrupole time-of-flight mass spectrometer. Derivatives were also prepared from 2-amino-5-methyl- and 2-amino-4,5-dimethoxybenzoic acid in order to confirm the identity of fragment ions containing the reducing terminus. Major fragments from the [M - H](-) ions from the neutral glycans retained the derivative (Y-type cleavages) and provided information on sequence and branching. Other major fragments were products of A-type cross-ring cleavages giving information on antenna structure. Singly doubly and triply charged ions were formed from sialylated glycans. They produced major fragments by loss of sialic acid and a series of singly charged ions that were similar to those from the neutral analogues. Doubly charge ions were also produced by the neutral glycans and were fragmented to form product ions with one and two charges. Again, the fragment ions with a single charge were similar to those from the singly charged parents, but branching information was less obvious because of the occurrence of more abundant ions produced by multiple cleavages. Detection limits were around 200 fmol (3 : 1 signal-to-noise ratio).  相似文献   

10.
Lysoglycerophosphocholine lipids (lyso-GPC) are important intermediates in the synthesis and metabolism of glycerophosphocholine lipids which are major components of the cellular lipid bilayer. Significant differences in the collisional induced decomposition (CID) behavior were observed for each of the four different subtypes of lyso-GPC in both positive and negative ions. A major difference was observed in the initial CID product ions derived from lyso-GPC [M + H]+ with the loss of water that was very abundant for acyl lyso-GPC which have a fatty acid ester substituent at either the sn-1 or sn-2 positions. Loss of neutral water was not very prominent in the case of plasmenyl and plasmanyl lyso-GPC species. The mechanism responsible for this difference in behavior of lyso-GPC subtypes was consistent with a higher proton affinity of carboxyl carbonyl oxygen atoms and vinyl ether oxygen atoms found in acyl and plasmenyl lyso-GPC lipids, respectively, as compared to the carbinol oxygen atom common to all lyso-GPC species. Collisional activation of lyso-GPC negative ions [M - 15]- also revealed distinctive differences in product ions derived from acyl and ether lyso-GPC species. The acyl compounds showed the facile elimination of a highly stable carboxylate anion, whereas plasmenyl species underwent fragmentation with loss of a neutral aldehyde, likely a result of rearrangement involving the double bond in the vinyl ether moiety. The alkyl ether species (plasmanyl lyso-GPC lipids) did not undergo either decomposition reaction observed for the other lyso-GPC subtypes which permitted differentiation of acyl, plasmenyl, and plasmanyl lyso-GPC subtypes.  相似文献   

11.
A series of six bimetallic oxovanadium complexes (1-6; only one was purified) were investigated by electrospray quadrupole time-of-flight tandem mass spectrometry (ESI-QTOF-MS/MS) in negative-ion mode. Radical molecular anions [M](.-) were observed in MS mode. Fragmentation patterns of [M](.-) were proposed, and elemental compositions of most of the product ions were confirmed on the basis of the high-resolution ESI-CID-MS/MS spectra. A complicated series of low-abundance product ions similar to electron impact (EI) ionization spectra indicated the radical character of the precursor ions. Fragment ions at m/z 214, 200, and 182 seem to be the characteristic ions of bimetallic oxovanadium complexes. These ions implied the presence of a V-O-V bridge bond, which might contribute to stabilization of the radical. To obtain more information for structural elucidation, three representative bimetallic oxovanadium complexes (1-3) were analyzed further by MS in positive-ion mode. Positive-ion ESI-MS produced adduct ions of [M + H](+), [M + Na](+), and [M + K](+). The fragmentation patterns of [M + Na](+) were different than those of radical molecular anions [M](.-). Relatively simple fragmentation occurred for [M + Na](+), possibly due to even-electron ion character. Negative-ion MS and MS/MS spectra of the hydrolysis product of Complex 1 supported these finding, in particular, the existence of a V-O-V bridge bond.  相似文献   

12.
The fragmentation patterns of nine di-, tri- and tetracyclic hydroquinones with potential antitumor activity were rationalized by invoking competing mechanisms that included sterically accelerated homolytic cleavage, Meerwein-type rearrangements and dehydrations through elimination or intramolecular nucleophilic substitution.  相似文献   

13.
Low-energy collision-induced electrospray ionization tandem mass spectrometry ESI-CID-MS/MS (in the positive ion mode) was used for the structural characterization of a series of five representative epioplythiodioxopipreazines: dethiotetra(methylthio)chemotin, chaetocochins A, B and C, and chemotin isolated from the fungus Chaetomium cochliodes. The fragmentation pathways were elucidated by ESI-IT-MS(n). The elemental compositions of most of the product ions were confirmed by low-energy ESI-CID-QTOF-MS/MS analyses. The loss of the S(2) molecule seems always to be the first when the S--S bond is present. The loss of 77 Da corresponding to the loss of the [CH(3)SCH(2)O]' radical was diagnostic for chaetocochins A and B, in which the two piperazines rings are linked by an acetal group. It was found that a McLafferty rearrangement plays a significant role in the skeleton fragmentation of theses series of studied complex multicyclic piperazine compounds. This MacLafferty rearrangement affords the product ions at m/z 416 and 400, containing the two piperazine rings belonging to the epipolythiodioxopipreazines. In addition, the pentacyclic rearrangement involving the loss of the SMe(.) radical seems to occur in the presence of the unfused ring. Finally the product ions at m/z 635 and 591 seem to be the characteristic ions for chaetocochin A.  相似文献   

14.
15.
Several compounds, representative of the class of lexitropsins, were analyzed by electrospray tandem mass spectrometry. The study of the fragmentations of the protonated molecular species ([M + H](+)) and of selected fragment ions allowed proposals for the main fragmentation pathways of compounds of this type. The interpretation of the fragmentation pathways of these compounds was complicated because of intramolecular hydrogen migration. In order to better understand the fragmentation pathways, the MS/MS/MS spectra of several compounds, and the MS/MS and MS/MS/MS spectra of the deuterated compounds, were obtained. Accurate mass measurements helped elucidate the structures of smaller fragment ions. Low-energy collision-induced decomposition (CID) tandem mass spectrometry of lexitropsins with electrospray ionization has proven to be a good method for the structural characterization and identification of this class of compounds. Main fragmentation pathways occur by cleavage of the peptide bond followed by the elimination of the substituted pyrrole ring, and their elucidation will facilitate structural characterization of new lexitropsins.  相似文献   

16.
Electrospray ionization mass spectrometry of ginsenosides   总被引:1,自引:0,他引:1  
Ginsenosides R(b1), R(b2), R(c), R(d), R(e), R(f), R(g1), R(g2) and F(11) were studied systematically by electrospray ionization mass spectrometry in positive- and negative-ion modes with a mobile-phase additive, ammonium acetate. In general, ion sensitivities for the ginsenosides were greater in the negative-ion mode, but more structural information on the ginsenosides was obtained in the positive-ion mode. [M + H](+), [M + NH(4)](+), [M + Na](+) and [M + K](+) ions were observed for all of the ginsenosides studied, with the exception of R(f) and F(11), for which [M + NH(4)](+) ions were not observed. The signal intensities of [M + H](+), [M + NH(4)](+), [M + Na](+) and [M + K](+) ions varied with the cone voltage. The highest signal intensities for [M + H](+) and [M + NH(4)](+) ions were obtained at low cone voltage (15-30 V), whereas those for [M + Na](+) and [M + K](+) ions were obtained at relatively high cone voltage (70-90 V). Collision-induced dissociation yielded characteristic positively charged fragment ions at m/z 407, 425 and 443 for (20S)-protopanaxadiol, m/z 405, 423 and 441 for (20S)-protopanaxatriol and m/z 421, 439, 457 and 475 for (24R)-pseudoginsenoside F(11). Ginsenoside types were identified by these characteristic ions and the charged saccharide groups. Glycosidic bond cleavage and elimination of H(2)O were the two major fragmentation pathways observed in the product ion mass spectra of [M + H](+) and [M + NH(4)](+). In the product ion mass spectra of [M - H](-), the major fragmentation route observed was glycosidic bond cleavage. Adduct ions [M + 2AcO + Na](-), [M + AcO](-), [M - CH(2)O + AcO](-), [M + 2AcO](2-), [M - H + AcO](2-) and [M - 2H](2-) were observed at low cone voltage (15-30 V) only.  相似文献   

17.
The covalent addition of nitric oxide (NO) to protein thiols, a posttranslational modification termed S-nitrosation, is a ubiquitous event that modulates diverse cellular processes. The in vivo addition of NO to protein amines (N-nitrosation) has also been described and may similarly modify protein structure and function. While mass spectrometry has been employed for identification of nitrosoproteins, little is known about how S- and N-nitrosopeptides fragment. Such knowledge is important for its potential to inform on sites of protein nitrosation. Here we used electrospray tandem mass spectrometry to elucidate collision-induced dissociation (CID) features of S- and N-nitrosopeptide ions. We show that S- and N-nitrosopeptide ions readily lose NO, giving rise to species that contain thiyl and aminyl radicals, respectively. Fragmentation (MS3) of these radical peptide ions revealed an atypical pattern, characterized by the cleavage of select alphaCC and NalphaC bonds, rather than the more usual cleavage of amide bonds that result in b- and y-ions. These unanticipated fragmentation patterns are reconciled by radical-mediated abstraction of hydrogen from beta-carbon followed by beta-fragmentation. For thiyl radical peptides, we also observed dominant loss of SH and CH2SH from the Cys side-chain. Our findings provide new insights into the gas-phase chemistry of NO-modified peptide ions and suggest an unusual fragmentation pattern that may aid in future MS-based attempts to define the nitrosoproteome.  相似文献   

18.
Glycoprotein function is controlled by several biological factors, one of them being the structure of carbohydrate chains (glycans) attached to specific amino acids of the protein backbone. Changes in glycan structures have been shown to modify the secondary and tertiary conformation of glycoproteins, thus their function. Powerful analytical tools are available for the characterization of sugar structures, and recently mass spectrometry (MS) has been increasingly useful for this purpose. Manual interpretation of tandem mass spectrum is possible but tedious. Automated interpretation should speed the analysis and enhance the results obtained. A new computer program for automated interpretation of tandem MS spectra of complex N-linked glycans oligosaccharides from mammals will be described. N-Linked oligosaccharides standards were derivatized with 1-phenyl-3-methyl-5-pyrazolone (PMP) and analyzed by matrix-assisted laser desorption/ionization (MALDI)-tandem MS. Simulated tandem mass spectra of other common glycans were also generated to test the algorithm. The MALDI-MS/MS spectra featured resolved isotopic distributions for the [M + H](+) and fragment ions of oligosaccharides. These isotopic distributions complicated the automated analysis of the spectra and were removed to leave only monoisotopic peaks. An algorithm was written for this purpose, yielding simplified tandem mass spectra. Another algorithm is then used to determine the structure of the oligosaccharide. A score is then given to each structure, depending on agreement with experimental results. The program successfully assigned the true structure in 24 out of the 28 cases (86%) and the true structure was among the three top scoring structures in all cases.  相似文献   

19.
Negative ion electrospray mass spectra of high-mannose N-linked glycans derivatised with 2-aminobenzoic acids and ionised from solutions containing ammonium hydroxide gave prominent [M-H](-) ions accompanied by weaker [M-2H](2-) ions. Fragmentation of both types of ions gave prominent singly charged glycosidic cleavage ions containing the derivatised reducing terminus and ions from the non-reducing terminus that appeared to be products of cross-ring cleavages. Differentiation of these two groups of ions was conveniently achieved in a single spectrum by use of chloro- or bromo-substituted benzoic acids in order to label ions containing the derivative with an atom with a distinctive isotope pattern. Fragmentation of the doubly charged ions gave more abundant fragments, both singly and doubly charged, than did fragmentation of the singly charged ions, but information of chain branching was masked by the appearance of prominent ions produced by internal cleavages.  相似文献   

20.
Several 2H-chromenes derived from carbazoles were analyzed by electrospray tandem mass spectrometry. The 2H-chromenes constitute an important class of compounds that exhibit photochromic activity. The fragmentation pathways of the protonated molecular species [M+H]+ were studied, and main fragmentation pathways of these compounds were identified. Fragmentation pathways of [M+D]+ ions were also studied in order to obtain information about the location of the ionizing proton or deuteron. It was found that the proton is not preferentially located on the nitrogen atom. The charge is preferentially located as a tertiary carbocation, resulting from the uptake of the proton (or deuteron) by the zwitterionic open structure of the chromenes. The major fragmentation occurred by cleavage of the gamma-bond relative to the carbocation center, leading to a fragment at m/z 191 (C5H11+ or C14H9N+), which are the most abundant fragment ions for almost all compounds. The presence of substituents in the chromene ring does not change this behavior. Other observed common fragmentation pathways included loss of CH3* (15 Da), loss of CO (28 Da), combined loss of CO and CH3 (43 Da), and loss of the phenyl ring via combined loss of C6H4 and CH3* (-91 Da) and combined loss of C6H6 and CO (-106 Da).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号