首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silica gels doped with Eu3+ ions were studied at temperatures between 10 K and 300 K by site selection spectroscopy in samples heated up to 200°C. The 5D0 7F0 transition shows internal structures due to the different environments of the europium ions. Lifetimes, energy levels and homogeneous linewidths are site dependent. In the wet gel the Eu3+ ions prefer a liquid-like environment and only when the liquid is removed by heat treatment, the ion is linked more strongly to the silica network.  相似文献   

2.
A series of Eu3+ ions co-doped (Gd0.9Y0.1)3Al5O12:Bi3+, Tb3+ (GYAG) phosphors have been synthesized by means of solvothermal reaction method. The XRD pattern of GYAG phosphor sintered at 1500 °C confirms their garnet phase. The luminescence properties of these phosphors have been explored by analyzing their excitation and emission spectra along with their decay curves. The excitation spectra of the GYAG:Bi3+, Tb3+, Eu3+ phosphors consists of broad bands in the shorter wavelength region due to 4f8 → 4f75d1 transition of Tb3+ ions overlapped with 6s2 → 6s16p1 (1S0 → 3P1) transition of Bi3+ ions and the charge transfer band of Eu3+–O2?. The present phosphors exhibit green and red colors due to 5D4 → 7F5 transition of Tb3+ ions and 5D0 → 7F1 transition of Eu3+ ions, respectively. The emission was shifted from green to red color by co-doping with Eu3+ ions, which indicate that the energy transfer probability from Tb3+ to Eu3+ ions are dependent strongly on the concentration of Eu3+ ions.  相似文献   

3.
The spectroscopic properties of europium in aluminium codoped silica glasses produced by the sol-gel technique have been studied with respect to the dopant concentrations and the thermal processing applied to the samples. After thermal annealing at temperatures up to 950_°C the bright red fluorescence around 613 nm characteristic for the trivalent europium ions (Eu3 +) has been observed. The lifetime was measured to be 0.1–2.4 ms depending on dopant concentrations and thermal treatment. Subsequent CO2-laser processing in air (short time remelting) gave rise to a bright blue fluorescence consisting of two broad bands, lying around 450 and 490 nm, with their peak position depending on the ratio between the aluminium and europium concentrations. The fluorescence lifetimes were found to be shorter than 1 s. This blue fluorescence is attributed to the divalent europium ion (Eu2 +), leading to the conclusion that the CO2-laser processing of europium doped alumina-silica glasses resulted in the reduction of the trivalent to the divalent europium ion. Laser processing could therefore be a valid alternative to conventional thermal annealing for the generation of Eu2 + in alumina-silica glasses.  相似文献   

4.
The sol-gel synthesis and structural characterisation of narsarsukite powders are reported. Samples doped with different Eu3+ amounts (Ti/Eu = 20 and 200), calcined at 800°C, have been characterised by powder XRD, 23Na, 29Si MAS NMR, Raman and luminescence spectroscopies. Eu3+-doped narsarsukite displays a high and stable room-temperature luminescence. The presence in narsarsukite of two different Eu3+ local environments is inferred based both on the distinct 5D0 7F0 lines observed and on the local field splitting of the 7F1,2 levels. For low lanthanide contents, the Eu3+ ions are essentially localised in a centrosymmetric environment characterized by a low-energy 5D0 7F0 line and a relatively long 5D0 lifetime (3.56–3.96 ms). In contrast, at high lanthanide contents the Eu3+ ions are also present in a second local site with a less covalent first coordination shell. This corresponds to a high-energy 5D0 7F0 line and a short 5D0 lifetime (0.84–0.99 ms). Therefore, it is likely that Eu3+ ions substitute for both Ti4+ and Na+, although the former ions are preferentially replaced at low Eu3+ content.  相似文献   

5.
Persistent spectral hole burning was investigated for the Eu3+ ions-doped glasses prepared by a sol-gel method. For the glasses containing OH bonds, persistent spectral hole is burned by the laser-induced rearrangement of the OH bonds surrounding the Eu3+ ions, which is thermally unstable to erase up to 200 K. On the other hand, the Eu3+-doped Al2O3-SiO2 glasses which are heated under H2 gas or irradiated with X-ray exhibit room temperature PSHB. The depth of the burnt hole increases as the Al2O3 content increases. The hole-formation could be explained by a model of the excitation of the Eu3+ ions and subsequent electron transfer with the excited [Eu3+] or oxygen-defect centers in the Al—O bonds. The burnt holes are more stable compared with those burned by the rearrangement of the OH bonds.  相似文献   

6.
Eu3+-doped boehmite nanofiber materials with different Eu3+ concentrations were synthesized without any surfactant, and followed by a series of characterizations. It was found that the boehmite nanofibers became coarser with the increase of Eu3+ concentration, which resulted in a gradual decrease of their specific surface areas. Moreover, the thermal stability of the boehmite nanofibers was studied by thermogravimetry–differential scanning calorimetry. All materials showed the phase transition from γ-Al2O3 to other forms. Yet the transition temperature was increased with the increase of Eu3+ concentration. The Eu3+-doped boehmite nanofibers with the maximum Eu3+ concentrations showed the best thermal stability. Photoluminescence spectra showed that the 2 mol% of doping concentration of Eu3+ ions in Eu3+:Al2O3 nanofiber was optimum.  相似文献   

7.
Eu3+, Dy3+ and Dy3+/Eu3+ doped CdO-GeO2-TeO2 glasses were prepared using the melt-quenching process and analyzed by X-diffraction, Raman spectroscopy, excitation and emission spectra, and emission decay time profiles. The lack of X ray diffraction peaks revealed that all samples are amorphous. Vibrational modes associated with TeOTe and GeOGe related bonds and molecular oxygen were detected by Raman spectroscopy. The luminescence characteristics were studied upon excitations that correspond with the emission of InGaN (370–420 nm) based LEDs. The Eu3+ singly doped glass displayed reddish-orange global emission, with x = 0.601 and y = 0.349 CIE1931 chromaticity coordinates, upon 393 nm excitation. Neutral emission with x = 0.373 and y = 0.412 CIE1931 chromaticity coordinates and correlated color temperature (CCT) of 4400 K, was achieved in the Dy3+ singly doped glass excited at 388 nm. The Dy3+/Eu3+ co-doped glass exhibited warm, neutral and soft warm white emissions with CCT values of 3435, 4153 and 2740 K, under excitations at 382, 388 and 393 nm, respectively, depending mainly on the Dy3+ and Eu3+ relative excitation. The Dy3+ excitation bands observed in the Dy3+/Eu3+ glass by monitoring the 611 nm Eu3+ emission, suggest that Dy3+ → Eu3+ energy transfer takes place, despite the fact that the Dy3+ emission decays in the Dy3+ and Dy3+/Eu3+ doped glass, remain without changes. The shortening of Eu3+ decay in presence of Dy3+ was attributed to an Eu3+ → Dy3+ non-radiative energy transfer process, which according with the Inokuti-Hirayama model might be dominated through an electric quadrupole-quadrupole interaction, with efficiency and probability of 5.5% and 51.6 s−1, respectively.  相似文献   

8.
Eu3+ luminescence was studied in Ba2Mg(BO3)2 by selectively substituting at Mg site. The parent host Ba2Mg(BO3)2 and Ba2Mg0.9Eu0.05Li0.05(BO3)2 were synthesized by conventional solid state reaction method. Their isostructural nature was confirmed using powder X-ray diffraction technique. The photoluminescence excitation spectrum of Eu3+ exhibited a broad Eu3+O2− charge transfer band with a maximum at 253 nm along with other excitation transitions. The emission characteristics of Eu3+ were found to be excitation wavelength-dependent. The equally intense magnetic and electric dipole transitions for excitation under longer wavelengths showed the presence of Eu3+ at a site with non-inversion symmetry. Excitation using 253 nm resulted in the predominant magnetic dipole transition revealing Eu3+ at a site with inversion symmetry. The difference in the relative intensities of magnetic and electric dipole transitions originates from the change in symmetry around Eu3+ in Ba2Mg(BO3)2 under different excitations.  相似文献   

9.
The complexation of Eu3+ and Am3+ ions with the humic acids has been investigated at various pH (4.0, 4.5, 5.0, 5.4) in 0.1M NaClO4 solution using solvent extraction technique. Two humic acids are used in this study: humic acid extracted from the soil of Taejon on the Okchon Basin of Korea (TJHA) and commercially available one from Aldrich Chemical Co. (AHA). The total carboxylate group concentrations were determined to be 3.58 meq/g and 4.59 meq/g for Taejon and Aldrich humic acids, respectively. The conditional stability constants (log 1 and log 2), dependent on the pH of the solution, of the complexes of Eu3+ and Am3+ ions with the humic acids have been determined at the ionic medium of 0.1M NaClO4. The values of stability constants with the degree of ionization of TJHA for Eu and Am complexes are quite well agreed with those of Lake Bradford humic acid (LBHA), indicating that structural characteristics of TJHA and LBHA may be quite similar to one another.  相似文献   

10.
Spectral-luminescent characteristics of Sr2Y8(SiO4)6O2: Eu powder crystal phosphor with the apatite structure and high-intensity luminescence of Eu3+ ions have been studied. The charge state of europium in the samples has been characterized by means of X-ray L3-adsorption spectroscopy. It was established that Eu3+ forms two types of optical centers. Besides, luminescence of Eu2+ions was found. Reduction Eu3+→Eu2+ was considered, which may be due to vacancy formation in the 4f crystal lattice position and to negative charge transfer by this vacancy to two ions. Thus, in the silicate lattice there exist inhomogeneously distributed oxygen-deficient centers, which are responsible for nonradiative transfer of excitation energy to Eu3+ and Eu2+ ions. To study electron-vibrational interactions in the crystal phosphor samples, their IR and Raman spectra were examined. In the luminescence spectrum of Eu2+, a series of low-intensity bands caused by interaction of the 4f65d state of Eu2+ with silicate lattice vibrations was observed.  相似文献   

11.
We studied the persistent spectral hole-burning (PSHB) of the Eu3+-doped Al2O3-SiO2 glasses, prepared by a sol–gel process, exposed to femtosecond laser pulses. The spectral holes were burned in the excitation spectra of the 7F05D0 transition of Eu3+ ion. The depth and width of the burned holes were 15% and 2.5 cm–1 fwhm at 7 K, respectively. The burned hole is stable up to room temperature. Fluorescence line narrowing spectra showed that Eu3+ ions were located in two different sites.  相似文献   

12.
Currently, with increasing demand for non-contact fluorescence intensity ratio-based optical thermometry, a novel phosphor with high-efficiency, dual-emitting centers, and differentiable temperature sensitivity is more and more urgent to develop. In this work, an efficient dual-emitting center optical thermometry with high sensitivity and multicolor tunable in Ca2Sb2O7:Bi3+, Eu3+ phosphor is firstly designed and successfully prepared. Under 330 nm excitation, the fabricated phosphor presents the featured and distinguishable emissions of Bi3+ and Eu3+ ions. The high efficiency energy transfer from Bi3+ to Eu3+ ions is proved and its corresponding mechanism belongs to dipole-dipole interaction. By modulating the ratio of Bi3+/Eu3+, the multicolor changes from blue to pink are realized. Based on the discriminative thermal quenching behavior between Bi3+ and Eu3+, the fluorescence intensity ratio of Eu3+ to Bi3+ in Ca2Sb2O7 samples illustrates excellent optical thermometry performance from 298 to 523 K. The maximum absolute sensitivity (Sa) and relative sensitivity (Sr) reach as high as 0.2773 K?1 at 523 K and 2.37% K?1 at 448 K, respectively. Notably, the discriminated surrounding temperature can be directly confirmed by observing the emitting color from purple to orange-red with the temperature increase from 298 to 523 K. Furthermore, the as-prepared phosphor materials also demonstrate outstanding repeatability and excellent reversibility. These results exhibit that the designed Ca2Sb2O7:Bi3+, Eu3+ phosphors have great promising applications in the field of non-contact optical temperature thermometry and thermochromic.  相似文献   

13.
Fluorescence and spectral hole burning properties of Eu3+ ions were studied in nanocrystals-precipitated SnO2-SiO2 glasses. The glasses were prepared to contain various amount of Eu2O3 using the sol-gel method, in which SnO2 nanocrystals were precipitated by heating in air. In the glasses containing Eu2O3 less than 1%, the Eu3+ ions were preferentially doped in the SnO2 nanocrystals and their fluorescence intensities were enhanced by the energy transfer due to the recombination of electrons and holes excited in SnO2 crystals. The SnO2 nanocrystals-precipitated glasses exhibited the persistent spectral holes with the depth of ∼25% of the total fluorescence intensities of the Eu3+ ions. With the increasing Eu2O3 concentration, the amount of SnO2 nanocrystals decreased and the Sn4+ ions formed the random glass structure together with the silica network. This structure change induced the fluorescence intensities and the hole depth to decrease.  相似文献   

14.
Silica xerogels containing Eu3+ ions and SnO2 nanocrystals were prepared in the sol‐gel process, and characterized by x‐ray diffraction (XRD) and photoluminescence spectra. Under the excitation at 393 nm, characteristic emission of Eu3+ ions at 614 nm was enhanced with increasing amount of SnO2 nanocrystals. Moreover, when the Eu3+/SnO2 co‐doped samples were excited at 345 nm, corresponding to the sideband of SnO2 nanocrystals, the emission of Eu3+ ions at 614 nm was clearly observed, while no emission of Eu3+ ions for the Eu3+‐doped sample. It may be ascribed to the energy transfer from SnO2 conduction band to Eu3+ conduction band. Further experimental results suggest that the energy transfer may be achieved through surface transition state.  相似文献   

15.
A novel sol-gel process has been developed to prepare nano-sized CdS quantum dots to improve the nonlinear optical properties. A bifunctional ligand, 3-aminopropyl triethoxysilane H2N(CH2)3Si(OC2H5)3, was used to disperse the Cd2+ ions in the gel solution. The CdO and CdS particles were observed by transmission electron microscope (TEM). The size of CdS microcrystallites with concentrations up to 13 wt.% in SiO2 gel matrix was found to be in the range of 2–4 nm with a very sharp size distribution. A well-defined absorption edge was observed in the absorption spectrum.  相似文献   

16.
Highly luminescent euxenite phased YNbTiO6:Eu3+ and Li+-doped YNbTiO6:Eu3+ red phosphors have been prepared through a facile sol–gel combustion process and investigated for the first time. The introduction of Li+ ions into YNbTiO6:Eu3+ is able to result in significant changes of the crystallinity and particle size, and bring a clear red-shift of absorption edge. A dominant red emission peak at 611 nm due to the 5D0  7F2 transition of Eu3+ was observed from photoluminescence spectra of the YNbTiO6:Eu3+ and Li+-doped YNbTiO6:Eu3+ phosphors. In particular, the emission intensity of the optimal Li+-doped YNbTiO6:Eu3+ was examined to be close to 400% of commercial Y2O3:Eu3+ phosphor. The mechanism of the enhanced emission by Li+ doping was discussed.  相似文献   

17.
Eu3+-doped alkali fluoroborate glasses B2O3–XCO3–NaF–Eu2O3 (where X = Li2, Na2, K2, and Ca, Mg) have been prepared using the conventional melting technique and their structural and optical properties have been evaluated. The XRD pattern of the glasses confirmed the amorphous nature and the FTIR spectra reveal the presence of BO3 and BO4 units as their local structures along with the strong OH? groups. From the absorption spectra the bonding parameters have been calculated and confirmed that the Eu–O bonds in the studied glasses are of covalent nature. Judd–Ofelt (JO) analysis has been carried out from the emission spectra. The JO parameters have been used to calculate transition probabilities (A), lifetime (τR) and branching ratios (βR) and peak stimulated emission cross-section (σPE) for the 5D0  7FJ (J = 1, 2, 3 and 4) transitions of the Eu3+ ions. The decay from the 5D0 level of Eu3+ ions in the title glasses has been measured and analysed. The lifetime of the 5D0 level is found to be shorter than the reported glasses which may be due to the presence of OH? groups.  相似文献   

18.
The photoluminescence properties of xZnO–(100−x)SiO2 (x = 0, 5, 10, 20) containing 1% Eu2O3 prepared by a sol–gel method were systematically investigated. The results indicated that the relative proportion of f–f transitions to charge transfer (CT) absorption decreased with the increase of ZnO concentration. The intensity of 5D07FJ transitions of Eu3+ ions was enhanced with the increase of ZnO content due to local structure changes and decreased quantities of Eu3+ ions clusters. The results of fluorescence line narrow (FLN) spectra indicated that Eu3+ ions occupied one site in SiO2 glass and two sites in ZnO–SiO2 glasses. The second-order crystal field parameters were calculated. B20 and B22 for site 1 increased with excitation energy, while ones hardly changed for site 2.  相似文献   

19.
The monodisperse array and nanowires of Y2O3:Eu3+ phosphor were synthesized using anodic aluminum oxide (AAO) template by sol–gel method. Scanning electron microscope (SEM) images indicated that Y2O3:Eu3+ nanowires are parallelly arranged, all of which are in uniform diameter of about 50 nm. The high-magnification SEM image showed that each nanowire is composed of a lot of agglutinating particles. The patterns of selected-area electron diffraction confirmed that Y2O3:Eu3+ nanowires mainly consist of polycrystalline materials. Excitation and emission spectra of Y2O3:Eu3+/AAO composite films were measured. The characteristic red emission peak of Eu3+ ion attributed to 5D07F2 transition in Y2O3:Eu3+/AAO nanowires broadened its halfwidth.  相似文献   

20.
A series of orange-red emitting phosphor Y(PO3)3: xEu3+ (x = 0.1–1.0) was prepared by a solid-state reaction route. The phosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) as well as decay lifetimes. Studies revealed the phase transfer from monoclinic to orthorhombic when Y3+ is totally replaced by Eu3+, and expansion of the unit cell occurs with increasing Eu3+ doped content. The PL spectra show that the phosphors Y(PO3)3: xEu3+ can be effectively excited by near ultraviolet (n-UV) light, and exhibit strong red-orange emission with no concentration quenching. The profile of PL spectra changes significantly at high Eu3+ content (x ≥ 0.80), which is due to the variation of preference for substitution of Eu3+. The luminescence due to the 5D0 → 7FJ (J = 1, 2) transitions at 77 K exhibits its own spectral features for different crystallographic site. It is found that Eu3+ ions occupy the centers of octahedral polyhedron and form Ci/C1 point group in Y(PO3)3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号