首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The Green’s function of the electric field of plasmons is determined in a semi-infinite medium with an abrupt plasma boundary where nonequilibrium conduction electrons either undergo elastic reflection from the boundary or “stick” to it and give rise to a stationary surface charge. The angular reflection of elastically scattered electrons can be either specular or diffuse. The Green’s function is used to find the singleevent spectrum of energy loss by a fast electron moving parallel to the boundary. The effect of electronboundary scattering parameters on the structure of bulk and surface plasmon resonances is analyzed. The probability of transition radiation of bulk plasmon by an electron moving in vacuum is examined. A new type of surface resonance is found under conditions of perfectly elastic scattering of conduction electrons from the plasma boundary, similar in structure to a tangential surface plasmon.  相似文献   

2.
Apart from two peaks caused by bulk and surface plasmons, four or five peaks (depending on the crystal type) of electron energy losses due to inter- and intraband electron transitions are observed in the investigation of the electron energy loss spectra for metals (Cu, Ag). A comparative analysis of the spectra for Cu or Ag films reveals a shift of bulk plasmon loss peaks to higher values for polycrystals, as in the case of transition metals and semiconductors. In a study concerning the orientation dependence of the energy loss spectra (ELS) for electrons scattered from the copper and silver surface, the anisotropy of the bulk plasmon peak is found when the incident beam’s polar angle or the sample’s azimuthal angle are altered. The anisotropy of the primary electron energy loss for plasmon excitation is also observed, depending on the sample orientation relative to the direction incident electrons. The energy losses are found to increase with an increasing atomic packing density of planes and crystal transparency relative to the incident beam.  相似文献   

3.
Dynamical theory of electron scattering is used to describe the electron transport in the surface regions of crystals. The angle resolved attenuation length of electrons is derived from the transmitted LEED electron current decay. Electron attenuation length energy dependence and anisotropy in polar angle are found for crystalline Cu(1 1 1) for two high symmetry azimuths. Pronounced anisotropy in polar angle distributions of attenuation lengths is found to be in qualitative agreement with the results obtained from the photoelectron diffraction. Comparison with the attenuation lengths obtained from semiclassical simulations for amorphous copper is given. This comparison demonstrates that simple transfers of the smoothly behaving surface sensitivity from amorphous materials oversimplifies the electron attenuation process and can lead to incorrect results in quantitative analyses of crystalline surfaces.  相似文献   

4.
We present a new interferometric setup where interference of a fast probe electron affects the ionization cross section of an atom. Interference is detected in the intensity of the inelastically scattered electrons at the Bragg scattering angle in transmission. The crystal serves both as a target for core ionization and as a beam-splitting and phase-shifting device.  相似文献   

5.
The excitation and propagation of bulk and surface (surface waves of transition radiation of plasmons at frequencies above the plasma frequency) plasma waves by incident electrons moving both in vacuum toward the surface of a metal and inside the metal whose boundary elastically and spectacularly reflects internal nonequilibrium electrons have been analyzed. In contrast to work [B. N. Libenson, J. Exp. Theor. Phys. 113, 553 (2011)], attention in this work is focused on the influence of surface effects on bulk-plasmon excitation by incident electrons. The probabilities and spectra of single characteristic energy loss of an intermediate- energy electron (50–500 eV) moving at an angle to the surface of the medium in three regions: in vacuum, in the medium, and again in vacuum after the electron leaves the medium are calculated. The kinetic approximation is used for the dielectric function, where the entire range of the plasmon spectrum is taken into account correctly for the problem under consideration. In the indicated energy range of incident electrons, surface effects, on the one hand, significantly reduces the probability of excitation of bulk plasma waves in the medium with strong spatial dispersion, in particular, as compared to the results obtained in [B.N. Libenson, J. Exp. Theor. Phys. 113, 553 (2011)], where surface effects were disregarded and the probability of bulkplasmon excitation by a 200-eV electron incident and emitted perpendicularly to the boundary is about one third of that in the unbounded medium. On the other hand, at grazing incidence from vacuum, the probability of transition radiation of bulk plasmons increases significantly and can lead to a change in the character of the angular dependence of the intensity of bulk plasma energy loss. Thus, the main result of this work is that a decrease in the glancing angle of the fast electron with respect to the vacuum–metal interface is accompanied both by an increase in the contribution from the transition mechanism to the probability of bulk-plasmon excitation in the vacuum region and by a decrease in the contribution from Cherenkov and bremsstrahlung mechanisms of excitation in the medium. The probability of bulk-plasmon excitation in the vacuum region exceeds the probability of excitation at the further motion of the electron in metallic aluminum at angles of incidence larger than 65°, 70°, and 75° at the energies E = 200, 350, and 500 eV, respectively.  相似文献   

6.
A new type of weak localization of electrons emerging during electron emission is considered. It is manifested in singularities of the angular spectra of particles reflected inelastically from a solid and causing Auger ionization of the atoms. The orientational dependences in this case appear as a result of interference of two types of processes. In one case, an electron from the primary beam penetrates the solid, undergoes inelastic scattering, ionizes an atom, and is then scattered elastically through a large angle, after which it leaves the solid. In the other case, elastic scattering of an electron precedes its inelastic scattering due to the Auger ionization of an atom. The azimuthal angular dependences of currents created by inelastically reflected electrons contain information on new processes of weak localization of particles.  相似文献   

7.
Energy distributions of electrons back-scattered from copper (100) and (110) surfaces have been obtained for incident electron energies in the range 30 to 350 eV. The relations between optical measurements and the characteristic energy losses, as well as the effect of interband transitions on the bulk and surface plasmon frequencies in metals which do not have ideally free electron plasmas are discussed. By chemisorbing increasing amounts of oxygen on the clean surface, the surface plasmon loss peak was identified in the copper energy loss spectrum from its intensity dependence on the dielectric constant at the surface. This peak has been identified by previous authors as the bulk plasmon loss of a single s-electron plasma oscillation. Our identification of the surface plasmon loss peak implies that the d-electrons in copper do participate in the plasma oscillation and that the bulk plasmon frequency is shifted from its free electron value because of interband transitions.  相似文献   

8.
Energy spectra of 50 kev-electrons scattered inelastically in thin Al foils of various thicknesses have been measured as a function of scattering angle. The measured angular distribution of electrons which have excited one or more volume plasmons is compared with theoretical calculations and good agreement is obtained. From the integrated intensities, the mean free path of 50 kev-electrons for plasmon excitation is determined with an accuracy of about 20%. The resulting value Λ=820 Å is in good agreement with the theoretical value calculated fromFerrell's free electron model (Λ=760Å).  相似文献   

9.
We have constructed a theory for the excitation of plasmons by a fast charged particle that undergoes diffraction in a single crystal and then is scattered elastically and incoherently through a large angle. The theory allows the 30-year-old experimental results that have seemed strange to be explained. An increase in the diffraction contrast in the channel of inelastic electron scattering related to the excitation of a bulk plasmon compared to the diffraction contrast of elastically and incoherently reflected electrons was observed in these experiments. Based on this theory, we show that the excitation of a surface plasmon affects only slightly the angular diffraction pattern, leaving it almost the same as that for elastically reflected electrons. These peculiarities of elastic and inelastic diffraction can be used to identify the type of energy plasma loss.  相似文献   

10.
We have studied inelastic electron scattering from a saturated monolayer of O2 physisorbed on graphite at 25K. The cross-section for excitation of the v = 0–1 vibrational transition in O2 peaks at 8.5–9eV, and is attributed to the 4Σu negative ion resonance. The angular distribution of electrons inelastically ejected out of the resonance orbital has been measured, and is found to peak at 15° from the normal to the crystal for several different incident electron beam angles, in accord with the theory of resonant electron scattering by an orientated molecule. We discuss the implications of this measurement for a determination of the orientation of the O2 molecule on the surface, taking account of possible multiple scattering effects.  相似文献   

11.
We study the energy dependence of elastically reflected low energy electrons, as well as volume and surface plasmon excitations. The variations versus primary electron angle of incidence and surface “cleanliness” have been correlated with the electron mean free path. We show also that the collector solid angle is an important geometric factor.  相似文献   

12.
A critical analysis of the present day Electron Energy Loss Spectroscopy (EELS) data interpretation methods has been done. The necessity for the consideration of a target as a multilayered structure with different inelastic energy loss cross sections in the surface and the bulk layers has been shown to be a reality both for the transmission EELS and the reflection EELS (REELS). A method to reconstruct inelastic energy loss cross sections in various target layers from the experimental data has been presented. Essential qualitative and quantitative dependence of the path length distribution function for reflected electrons as a function of scattering angle has been revealed. The tested method for extraction of the information from REELS experiments with angular resolution has been presented.Received: 9 October 2003, Published online: 19 February 2004PACS: 34.80.-i Electron scattering - 34.50.Bw Energy loss and stopping power - 25.30.Fj Inelastic electron scattering to continuum  相似文献   

13.
Electron energy loss spectroscopy (EELS) on plasmons has been applied to determine the thermal expansion coefficient on the surface and to estimate the density of conduction electrons in the surface layer of aluminium. Using the data on the temperature dependence of the surface plasmon energy shift, the value of thermal expansion coefficient on the surface was calculated to be αs=1.3 × 10?4K?1 that is about two times higher than the bulk value. A simple model is proposed which takes account of the influence of electron density non-uniformity in the surface layer on the dispersion of plasma oscillations. An estimation of the density of conduction electrons in the surface layer based on the observed dependence of the surface plasmon energy on the energy of primary electrons gave a value about 5% lower than the bulk value. The thickness of altered surface layer is about 10 Å.  相似文献   

14.
Photographs of cross sections of an electron beam backscattered from a thin tungsten target have been obtained on a dosimetric film. The procession of images makes it possible to obtain the spatial distribution of backscattered particles. The angles of back reflection θbr of electron beams from foils have been measured. A 7.4-MeV microtron has been used as a source of electrons. The experiments have been performed with a tungsten foil 386 mg/cm2 (200 μm) thick and a tantalum foil 1328 mg/cm2 (800 μm) thick. Particles have been injected at an angle of α = 10° to the foil surface. The Monte Carlo simulation of the scattering of relativistic electrons incident on a planar target at small angles to its surface has been performed. The spatial and energy distributions of backscattered particle fluxes both transmitted through the target and reflected from it have been calculated. The dependences of fluxes on the direction of injection of particles and on the material and thickness of the target have been considered.  相似文献   

15.
A study is made of the features arising in the spatial distributions of reflected electrons as a result of a focusing effect. Experiments are conducted on single-crystal Mo (100) with primary electron energies of 0.5–2 keV and detection of electrons which lose fixed amounts of energy up to 300 eV. An analysis of the data establishes the dependence of the electron focusing efficiency on the amount of energy loss. It is shown that when electrons are reflected with single losses through plasmon excitation, the magnitude of the effect is determined mainly by the average number of scattering atoms encountered by an electron along its path to the surface. When the energy losses are high, defocusing owing to multiple elastic and inelastic scattering of the electrons is found to predominate. Zh. Tekh. Fiz. 68, 128–133 (June 1998)  相似文献   

16.
推导了随机介质背散射Mueller矩阵的直接计算公式,并运用矢量Monte Carlo方法进行了数值模拟.结果表明随机介质背散射二维Mueller矩阵方位关系随散射系数的减小而增强,而与微粒大小关系不大;Mueller矩阵元素绝对值的空间分布随径向呈近似指数规律衰减,矩阵元素的方位变化具有周期性.对称系统的二维Mueller矩阵的花样图中仅有7幅独立,其余9幅可通过对称、旋转变换得到.  相似文献   

17.
We report energy distributions of electrons emitted from Al surfaces under impact by 1 keV Ar+ and 1-5 keV Ne+ ions. The variation of the energy distributions with the angle of incidence is different for both ions and provides information on the mechanism responsible for electron emission. For Ar+ electron emission results mainly from Auger neutralization, while for Ne+ an important emission mechanism is the decay of plasmon excitations. We find a transition between surface and bulk plasmon excitations as the energy of the ion is increased.  相似文献   

18.
Reflection electron energy loss spectra (REELS) of Al(111) single crystal and of the aluminum polycrystalline (poly Al) film were measured at 200 eV and 1000 eV electron energies for a variety of experimental geometries and were mutually compared. No anisotropy was found for the poly Al, as expected. Polar intensity plots evaluated from the elastic (no loss) and inelastic first surface plasmon- and first bulk plasmon-loss intensities of the Al(111) surface show clearly discernable peaks for both considered electron energies. Their positions on the angular axis are the same for the elastic as well as for the inelastic, surface and bulk plasmon-loss peaks. The polar plots of intensities of the elastically and inelastically reflected electrons were compared to calculated intensities of photoelectrons emitted from the Al 2s core level to the same kinetic energy. Peak positions in the theoretically determined polar plots of electron intensities agree with those obtained experimentally in REELS.  相似文献   

19.
We study the interaction with bulk and surface modes of electrons emitted in the proximity of a solid surface. We analyze the modifications in the energy loss, and in bulk and surface plasmon excitations, taking into account the effects due to the sudden creation of the electron and residual atomic hole, and the finite distance to the surface. The process is described using the dielectric function formulation and the specular reflection model. We derive expressions for the electrostatic potential in the medium and in vacuum, which include all the terms due to bulk and surface modes. The effect of each term in the energy loss rate and in the average number of plasmon excitations is discussed. The results illustrate in detail the different spatial dependences of the electron and ion interactions with the bulk and surface perturbations, through the relevant range of distances for studies of electron emission in the proximity of solid surfaces.  相似文献   

20.
It has been shown that optical and ultraviolet radiation from relativistic electrons at planar channeling in optically transparent crystals is characterized by an unusual dependence on the polar and azimuth angles. A fraction of radiation with the frequency ω near which the derivative of the refractive index is nonzero, n'(ω) = dn(ω)/dω ≠ 0, should be observed at an angle close to π/2 with respect to the electron beam. For normal dispersion (n'(ω) > 0), this angle is smaller than π/2, whereas for anomalous dispersion (n'(ω) < 0), it is larger than π/2 (“backward” radiation). A pronounced dependence of the radiation intensity on the azimuth angle φ, i.e., azimuthal asymmetry, appears beyond the region of normal and anomalous dispersion at a fixed polar angle θ. In particular, the ratio of radiation intensities at angles φ = 0 and π/2 at θ = π/2 reaches a maximum value of about the square of the refractive index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号