首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the following IBV problem of nonlinear hyperbolic equations u_(tt)- sum from i, j=1 to n a_(jj)(u, Du)u_(x_ix_j)=b(u, Du), t>0, x∈Ω, u(O, x) =u~0(x), u_t(O, x) =u~1(v), x∈Ω, u(t, x)=O t>O, x∈()Ω,where Ωis the exterior domain of a compact set in R~n, and |a_(ij)(y)-δ_(ij)|= O(|y|~k), |b(y)|=O(|y|~(k+1)), near y=O. It is proved that under suitable assumptions on the smoothness,compatibility conditions and the shape of Ω, the above problem has a unique global smoothsolution for small initial data, in the case that k=1 add n≥7 or that k=2 and n≥4.Moreover, the solution ham some decay properties as t→ + ∞.  相似文献   

2.
In this paper we study the first and tiie third boundary value problems for the elliptic equation \[\begin{array}{l} \varepsilon \left( {\sum\limits_{i,j = 1}^m {{d_{i,j}}(x)\frac{{{\partial ^2}u}}{{\partial {x_i}\partial {x_j}}} + \sum\limits_{i = 1}^m {{d_i}(x)\frac{{\partial u}}{{\partial {x_i}}} + d(x)u} } } \right) + \sum\limits_{i = 1}^m {{a_i}(x)\frac{{\partial u}}{{\partial {x_i}}} + b(x) + c} \ = f(x),x \in G(0 < \varepsilon \le 1), \end{array}\] as the degenerated operator bas singular points, where \[\sum\limits_{i,j = 1}^m {{d_{i,j}}(x){\xi _i}{\xi _j}} \ge {\delta _0}\sum\limits_{i = 1}^m {\xi _i^2} ,({\delta _0} > 0,x \in G).\] The uniformly valid asymptotic solutions of boundary value problems have been obtained under the condition of \[\sum\limits_{i = 1}^m {{a_i}(x){n_i}(x){|_{\partial G}} > 0,or} \sum\limits_{i = 1}^m {{a_i}(x){n_i}(x){|_{\partial G}} < 0} ,\] where \(n = ({n_1}(x),{n_2}(x), \cdots ,{n_m}(x))\) is the interior normal to \({\partial G}\).  相似文献   

3.
In this paper we consider the systems governed, by parabolioc equations \[\frac{{\partial y}}{{\partial t}} = \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial {x_i}}}} ({a_{ij}}(x,t)\frac{{\partial y}}{{\partial {x_j}}}) - ay + f(x,t)\] subject to the boundary control \[\frac{{\partial y}}{{\partial {\nu _A}}}{|_\sum } = u(x,t)\] with the initial condition \[y(x,0) = {y_0}(x)\] We suppose that U is a compact set but may not be convex in \[{H^{ - \frac{1}{2}}}(\Gamma )\], Given \[{y_1}( \cdot ) \in {L^2}(\Omega )\] and d>0, the time optimal control problem requiers to find the control \[u( \cdot ,t) \in U\] for steering the initial state {y_0}( \cdot )\] the final state \[\left\| {{y_1}( \cdot ) - y( \cdot ,t)} \right\| \le d\] in a minimum, time. The following maximum principle is proved: Theorem. If \[{u^*}(x,t)\] is the optimal control and \[{t^*}\] the optimal time, then there is a solution to the equation \[\left\{ {\begin{array}{*{20}{c}} { - \frac{{\partial p}}{{\partial t}} = \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial {x_i}}}({a_{ji}}(x,t)\frac{{\partial p}}{{\partial {x_j}}}) - \alpha p,} }\{\frac{{\partial p}}{{\partial {\nu _{{A^'}}}}}{|_\sum } = 0} \end{array}} \right.\] with the final condition \[p(x,{t^*}) = {y^*}(x,{t^*}) - {y_1}(x)\], such that \[\int_\Gamma {p(x,t){u^*}} (x,t)d\Gamma = \mathop {\max }\limits_{u( \cdot ) \in U} \int_\Gamma {p(x,t)u(x)d\Gamma } \]  相似文献   

4.
In this paper initial value problems and nonlinear mixed boundary value problems for the quasilinear parabolic systems below $\[\frac{{\partial {u_k}}}{{\partial t}} - \sum\limits_{i,j = 1}^n {a_{ij}^{(k)}} (x,t)\frac{{{\partial ^2}{u_k}}}{{\partial {x_i}\partial {x_j}}} = {f_k}(x,t,u,{u_x}),k = 1, \cdots ,N\]$ are discussed.The boundary value conditions are $\[{u_k}{|_{\partial \Omega }} = {g_k}(x,t),k = 1, \cdots ,s,\]$ $\[\sum\limits_{i = 1}^n {b_i^{(k)}} (x,t)\frac{{\partial {u_k}}}{{\partial {x_i}}}{|_{\partial \Omega }} = {h_k}(x,t,u),k = s + 1, \cdots N.\]$ Under some "basically natural" assumptions it is shown by means of the Schauder type estimates of the linear parabolic equations and the embedding inequalities in Nikol'skii spaces,these problems have solutions in the spaces $\[{H^{2 + \alpha ,1 + \frac{\alpha }{2}}}(0 < \alpha < 1)\]$.For the boundary value problem with $\[b_i^{(k)}(x,t) = \sum\limits_{j = 1}^n {a_{ij}^{(k)}} (x,t)\cos (n,{x_j})\]$ uniqueness theorem is proved.  相似文献   

5.
6.
The paper deals with the following boundary problem of the second order quasilinear hyperbolic equation with a dissipative boundary condition on a part of the boundary:u_(tt)-sum from i,j=1 to n a_(ij)(Du)u_(x_ix_j)=0, in (0, ∞)×Ω,u|Γ_0=0,sum from i,j=1 to n, a_(ij)(Du)n_ju_x_i+b(Du)u_t|Γ_1=0,u|t=0=φ(x), u_t|t=0=ψ(x), in Ω, where Ω=Γ_0∪Γ_1, b(Du)≥b_0>0. Under some assumptions on the equation and domain, the author proves that there exists a global smooth solution for above problem with small data.  相似文献   

7.
In this paper, we have obtained the equivalence theorems of stability between the system of differential equations $[{\dot x_i}(t) = \sum\limits_{j = 1}^n {{a_{ij}}{x_j}(t)} + \sum\limits_{j = 1}^n {{b_{ij}}{x_j}(t)} + \sum\limits_{j = 1}^n {{c_{ij}}{{\dot x}_j}(t)} (i = 1,2, \cdots ,n)\]$ and the system of differential-difference equations of neutral type $[{\dot x_i}(t) = \sum\limits_{j = 1}^n {{a_{ij}}{x_j}(t)} + \sum\limits_{j = 1}^n {{b_{ij}}{x_j}(t - {\Delta _{ij}})} + \sum\limits_{j = 1}^n {{c_{ij}}{{\dot x}_j}(t - {\Delta _{ij}})} (i = 1,2, \cdots ,n)\]$ where a_ij, b_ij, c_ij are given constants, and \Delta_ij are non-negative real constants.  相似文献   

8.
Letf_v(z)=∑a_(v,,k)z~(λ_(v,k))(v=1,…,s)be s power series with algebraic coefficients a_(v,k),convergence radii R_v>0 and sufficientlyrapidly increasing integers λ_(v,k).It is shown that under certain conditions depending only ona_(v,k) and λ_(v,k),(i)f_1(θ_1),…,f_s(θ_s)are algebraically independent for arbitrary algebraicnumbers θ_1,…,θ_s with θ<丨θ_v丨相似文献   

9.
主要研究差分方程a_1(z)f(x+1)+a_0(z)f(z)=F(z)的一个有穷级超越亚纯解f(z)与亚纯函数g(z)分担0,1,∞CM时的唯一性问题(其中a_(z),a0(z),F(z)为非零多项式,且满足a_1(z)+a_0(z)■0),得到f(x)≡g(z),或f(z)+g(z)≡f(z)g(z),或存在一个多项式β(z)=az+b_0和一个常数a_0满足e~(a_0)≠e~(b_0),使得f(z)=(1-e~(β(x)))/(e~(β(x))(e~(a_o-b_0)-1))与g(z)=(1-e~(β(x)))/(1-e~(b_o-a_0)),其中a(≠0),b_0为常数.  相似文献   

10.
We study the system $D_{0y}^\alpha u_i + ( - 1)^{i - 1} \lambda \frac{\partial } {{\partial x}}u_i = a_{i1} u_1 + a_{i2} u_2 + f_i $D_{0y}^\alpha u_i + ( - 1)^{i - 1} \lambda \frac{\partial } {{\partial x}}u_i = a_{i1} u_1 + a_{i2} u_2 + f_i , i = 1, 2, of Riemann-Liouville fractional partial differential equations with constant coefficients and prove theorems on the existence and uniqueness of a solution of a Cauchy problem in nonlocal statement.  相似文献   

11.
Summary. Let $\widehat{\widehat T}_n$ and $\overline U_n$ denote the modified Chebyshev polynomials defined by $\widehat{\widehat T}_n (x) = {T_{2n + 1} \left(\sqrt{x + 3 \over 4} \right) \over \sqrt{x + 3 \over 4}}, \quad \overline U_{n}(x) = U_{n} \left({x + 1 \over 2}\right) \qquad (n \in \mathbb{N}_{0},\ x \in \mathbb{R}).$ For all $n \in \mathbb{N}_{0}$ define $\widehat{\widehat T}_{-(n + 1)} = \widehat{\widehat T}_n$ and $\overline U_{-(n + 2)} = - \overline U_n$, furthermore $\overline U_{-1} = 0$. In this paper, summation formulae for sums of type $\sum\limits^{+\infty}_{k = -\infty} \mathbf a_{\mathbf k}(\nu; x)$ are given, where $\bigl(\mathbf a_{\mathbf k}(\nu; x)\bigr)^{-1} = (-1)^k \cdot \Bigl( x \cdot \widehat{\widehat T}_{\left[k + 1 \over 2\right] - 1} (\nu) +\widehat{\widehat T}_{\left[k + 1 \over 2\right]}(\nu)\Bigr) \cdot \Bigl(x \cdot \overline U_{\left[k \over 2\right] - 1} (\nu) + \overline U_{\left[k \over 2\right]} (\nu)\Bigr)$ with real constants $ x, \nu $. The above sums will turn out to be telescope sums. They appear in connection with projective geometry. The directed euclidean measures of the line segments of a projective scale form a sequence of type $(\mathbf a_{\mathbf k} (\nu;x))_{k \in \mathbb{Z}}$ where $ \nu $ is the cross-ratio of the scale, and x is the ratio of two consecutive line segments once chosen. In case of hyperbolic $(\nu \in \mathbb{R} \setminus] - 3,1[)$ and parabolic $\nu = -3$ scales, the formula $\sum\limits^{+\infty}_{k = -\infty} \mathbf a_{\mathbf k} (\nu; x) = {\frac{1}{x - q_{{+}\atop(-)}}} - {\frac{1}{x - q_{{-}\atop(+)}}} \eqno (1)$ holds for $\nu > 1$ (resp. $\nu \leq - 3$), unless the scale is geometric, that is unless $x = q_+$ or $x = q_-$. By $q_{\pm} = {-(\nu + 1) \pm \sqrt{(\nu - 1)(\nu + 3)} \over 2}$ we denote the quotient of the associated geometric sequence.
  相似文献   

12.
In this article we generahze the polynomials of Kantorovitch \({P_n}(f)\) . Let \({B_n}\) be a sequence of linear operators from C[a,b] into \({H_n}\), if \[f(t) \in L[a,b],F(u) = \int_a^u {f(t)dt} ,{A_n}(f(t),x) = \frac{d}{{dx}}{B_{n + 1}}(F(u),x)\], here \({B_n}\)satisfy\[\begin{array}{l} (a):{B_n}(1,x) \equiv 1,{B_n}(u,x) \equiv x;\(b):for{\kern 1pt} {\kern 1pt} g(u) \in C[a,b]{\kern 1pt} {\kern 1pt} we{\kern 1pt} {\kern 1pt} have{\kern 1pt} {\kern 1pt} {B_n}(g(u),b) = g(b). \end{array}\]. we call such \({A_n}(f)\) generalized polynomials of Kantorovitch (denoted by \({A_n}(f) \in K\) ). Let \[\begin{array}{l} {\varepsilon _n}({W^2};x)\mathop = \limits^{def} \mathop {\sup }\limits_{f \in {W^2}} \left| {{A_n}(f(t),x) - f(x) - f'(x)({A_n}(t,x) - x)} \right|,\{\varepsilon _n}{({W^2}{L^p})_{{L^p}}}\mathop = \limits^{def} \mathop {\sup }\limits_{f \in {W^2}{L^p}} {\left\| {{A_n}(f(t),x) - f(x) - f'(x)({A_n}(t,x) - x)} \right\|_p}. \end{array}\] We have proved the following results: Let An he a sequence of linear continuous operators of type \[C[a,b] \Rightarrow C[a,b],{D_n}(x,z)\mathop = \limits^{def} {A_n}(\left| {t - z} \right|,x) - \left| {x - z} \right| - ({A_n}(t,x) - x)Sgn(x - z),{A_n}(1,x) = 1\] then (1):\({\varepsilon _n}({W^2};x) = \frac{1}{2}\int_a^b {\left| {{D_n}(x,z)} \right|} dz\), (2): Moreover, if \({A_n}\) be a sequence of linear positive operators, then for \(\left[ {\begin{array}{*{20}{c}} {a \le x \le b}\{a \le z \le b} \end{array}} \right]\) ,we have \({D_n}(x,z) \ge 0\), and \({\varepsilon _n}({W^2};x) = \frac{1}{2}{A_n}({(t - x)^2},x)\). Let \({A_n}(f) \in K\) be a sequence of linear positive operators,\[{R_n}{(z)_L} = \frac{1}{2}\int_a^b {\left| {{D_n}(x,z)} \right|} dx\],then \[{R_n}{(z)_L} = \frac{1}{2}\left[ {{B_{n + 1}}({u^2},z) - {z^2}} \right]\] and \[{\varepsilon _n}{({W^2}L)_L}{\rm{ = }}\frac{1}{2}\left\| {{B_{n + 1}}({u^2},z) - {z^2}} \right\|\]. Let \[{g_n} = \frac{1}{2}\mathop {\max }\limits_{a \le x \le b} {A_n}({(t - x)^2},x),{h_n} = \frac{1}{2}\mathop {\max }\limits_{a \le z \le b} \left[ {{B_{n + 1}}({u^2},z) - {z^2}} \right],\] then \[{\varepsilon _n}{({W^2}{L^p})_{{L^p}}} \le {g_n}^{1 - \frac{1}{p}}{h_n}^{\frac{1}{p}}(1 < p < \infty ).\]  相似文献   

13.
Hou  Qing-Hu  Zhang  Zuo-Ru 《The Ramanujan Journal》2019,48(1):117-129
The Ramanujan Journal - Let $$\hat{\mathscr {L}}$$ be the operator given by $$\hat{\mathscr {L}} \{a_n\}_{n \ge 0} = \{a_{n+1}^2 - a_{n} a_{n+2} \}_{n \ge 0}$$ . A sequence $$\{ a_n \}_{n \ge 0}$$...  相似文献   

14.
We consider in this paper the existence and the asymptotic behavior of positive ground state solutions of the boundary value problem $${-}\Delta u = a_{1}(x)u^{\alpha_{1}} + a_{2}(x) u^{\alpha_{2}}\,\, {\rm in}\,\, \mathbb{R}^{n}, \lim_{|x| \rightarrow \infty} u(x) = 0$$ , where α 1, α 2 < 1 and a 1, a 2 are nonnegative functions in ${C^{\gamma}_{loc}} (\mathbb{R}^{n})$ , ${0 < \gamma < 1}$ , satisfying some appropriate assumptions related to Karamata regular variation theory.  相似文献   

15.
In this paper, we study an important class of (α,β)-metrics in the form F = (α+β)^m+1/α^m on an n-dimensional manifold and get the conditions for such metrics to be weakly- Berwald metrics, where α = √aij(x)y^iy^j is a Riemannian metric and β = bi(x)y^i is a 1-form and m is a real number with m ≠ -1,0,-1/n. Furthermore, we also prove that this kind of (α,β)-metrics is of isotropic mean Berwald curvature if and only if it is of isotropic S-curvature. In this case, S-curvature vanishes and the metric is weakly-Berwald metric.  相似文献   

16.
This paper deals with the following mixed problem for Quasilinear hyperbolic equationsThe M order uniformly valid asymptotic solutions are obtained and there errors areestimated.  相似文献   

17.
In this paper, we study the following Eigen-problem {-\frac{∂}{∂x_i}(a_{ij}(x, u)\frac{∂u}{∂x_j}) + \frac{1}{2}a_{iju}(x,u)\frac{∂u}{∂x_i}\frac{∂u}{∂x_j} + h(x)u = μμ\frac{n+2}{n-2} \quad in Ω \qquad (0.1) u = 0 \quad on ∂Ω u > 0 \quad in Ω ⊂ R^n under some assumptions. First. we minimize I(u) = \frac{1}{2}∫_Ωa_{ij}(x, u)\frac{∂u}{∂x_i}\frac{∂u}{∂x_j} + h(x)u² over E_α = {u ∈ H¹_0(Ω); ∫_Ωu^α = 1} ( 2 < α < N = \frac{2n}{n-2}) to give a H¹_0-solution U_α of the perturbation problems of (0.1). Since I is not differentiable in H¹_0(Ω), the key point is the estimate of U_α. Then, we derive local uniform bounds of (U_α) and give a 'bad' solution of (0.1). Last, we remove the singular points of the 'bad' solution to obtain a solution of (0.1), our result is a extension of that of Brezis & Nirenberg.  相似文献   

18.
For any integer \(n> 1,\) we prove
$$\begin{aligned} 2n{2n\atopwithdelims ()n}&\bigg |\sum _{k=0}^{n-1}(3k+1){2k\atopwithdelims ()k}^3(-8)^{n-1-k},\\ 2n{2n\atopwithdelims ()n}&\bigg |\sum _{k=0}^{n-1}(6k+1){2k\atopwithdelims ()k}^3(-512)^{n-1-k},\\ 2n{2n\atopwithdelims ()n}&\bigg |\sum _{k=0}^{n-1}(42k+5){2k\atopwithdelims ()k}^3 4096^{n-1-k},\\ 2n{2n\atopwithdelims ()n}&\bigg |\sum _{k=0}^{n-1}(20k^2+8k+1){2k\atopwithdelims ()k}^5(-4096)^{n-1-k}. \end{aligned}$$
The first three results confirm three divisibility properties on sums of binomial coefficients conjectured by Z.-W. Sun.
  相似文献   

19.
In this paper, we present oscillation criteria for the second-order nonlinear dynamic equation \({[a(t)\phi_{\gamma} (x^{\Delta}(t))]^{\Delta} + p(t)\phi_{\gamma}(x^{\Delta^{\sigma}}(t)) + q_{0}(t) \phi_{\gamma}(x(g_{0}(t)))+\sum_{i=1}^{2}\int_{a_{i}}^{b_{i}}q_{i}(t,s)\phi_{\alpha_{i}(s)}(x(g_{i}(t,s))) \Delta \zeta_{i}(s)=0}\) on a time scale \({\mathbb{T}}\) which is unbounded above. Our results generalize and improve some known results for oscillation of second-order nonlinear dynamic equation. Some examples are given to illustrate the main results.  相似文献   

20.
Let {itq} > 1 be an integer number, \(f\left( x \right) = {a_n}{x^n} + \ldots + {a_1}x + {a_0}\) be a polynomial with integer coefficients, and ({ita}{in{itn}}, . . . ,{ita}{in1},{itq}) = 1. The following estimate is valid: \(\left| {S\left( {\frac{{f\left( x \right)}}{q}} \right)} \right| = \left| {\sum\limits_{x = 1}^q \rho \left( {\frac{{f\left( x \right)}}{q}} \right)} \right| \ll {q^{1 - 1/n}}\), where \(\rho \left( t \right) = 0,5 - \left\{ t \right\}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号