首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preparations of copper(I) and bismuth(III) complexes of hydrotris(4-ethyl-3-methyl-5-thioxo-1,2,4-triazolyl)borate (Tr(Et,Me)) are described. These complexes have been characterized by means of spectroscopy and microanalysis. Molecular structures of [Cu(Tr(Et,Me))](2) x 2.5CH(3)CN x 0.5H(2)O (3a) and [Bi(Tr(Et,Me))(2)]NO(3) x 2CHCl(3) (4a) have been determined by single-crystal X-ray diffraction. In the centrosymmetric dimeric copper(I) complex, Tr(Et,Me) acts in the k(3)S,S',H:kS' ' coordination mode. The metal is found in a distorted trigonal geometry as the ligand exhibits an "S(3)-inverted" conformation at the boron center so that a weak [B-H.Cu] agostic interaction renders the overall coordination of the (3 + 1) type. On the other hand, in the bismuth complex, Tr(Et,Me) presents the k(3)S,S',S' ' coordination mode and the "S(3)-normal" conformation. The metal is found in a regular octahedral geometry bound by six thioxo groups of two ligands. Species distributions in solution have been studied using electrospray ionization mass spectrometry upon dissolution of 3a and 4a crystals in acetonitrile. Monomeric and polynuclear copper(I) complexes with different M:L ratios are present in solution, while for 4a only the monomeric species is present.  相似文献   

2.
The process of Gd3+ complexation with 4-dihydroxyborophenylalanine (DHBPA) in aqueous solutions was studied by the contact conductometry, IR, and X-ray photoelectronic spectroscopy methods. The complex formation reactions of Gd3+ with DHBPA were found to occur in steps, depending on the metal: ligand ratio. In the final reaction product, i.e., the chelate complex [Gd(DHBPA)3], each molecule of a ligand occupies two coordination sites.  相似文献   

3.
Feather fibers were modified by treatment with 5% tannic acid (TA) solution. Kinetics of the modification was investigated as a function of the reaction time. The maximum loading of TA on feather reached 8.3% after being treated by TA for 9 h. The adsorption of metal cations (Cu2+, Zn2+) by unmodified and TA-modified feather fibers was investigated as a function of fiber weight gain, temperature, and pH of the metal solution. The adsorption was enhanced at alkaline pH and ambient temperature and increased with the weight gain of TA. The maximum uptake of metal cations (Cu2+, 0.77 mmol/g; Zn2+, 0.95 mmol/g) was obtained by TA-modified feather at weight gain: 8.3%, pH 11, while at the acidic pH, the adsorption of metal cations by either unmodified or TA-modified feather was negligible. The influence of anions on the adsorption of metal cations was also studied. The uptake of Cu2+ from chloride was higher and faster than that from nitrate. Desorption of the metals was performed at acidic pH 2.5 for 48 h. The feather–TA–metal complexes exhibited higher stability for metal cations than the feather–metal complexes. All these experiments reveal that TA-modified feather fibers have good adsorption to metal cations and can be used as metal adsorbent in wastewater treatment.  相似文献   

4.
Synthesis of water-soluble potassium salts of carboxymethyl derivatives of calix[4]pyrogallols and dodeca(carboxylatomethyl)tetramethylcalix[4]pyrogallol (L) complexes with transition metal ions (Cu2+, Fe3+, La3+) is described. Their structures in the solid state and in solution were characterized by NMR spectroscopy, ESR, and IR spectroscopy. Calix[4]pyrogallol dodecacarboxylates exist in the rccc-configuration. Calix[4]pyrogallol with methyl substituents at the lower rim in a wide range concentrations exists in water predominantly in the dimeric form. The obtained polynuclear transition metal complexes possess less symmetric structure than potassium salt of calix[4]pyrogallol (K12L). All studied complexes contain water molecules bound by rather strong hydrogen bonds. At room temperature the Fe4L complex is characterized by the environment of the Fe3+ ions close to octahedral. The absence of signals in the ESR spectrum of the Cu6L complex indicates the strong antiferromagnetic interaction Cu2+-Cu2+.  相似文献   

5.
The reduction of immobile cations La3+ and Ce3+ in fluoride-conducting solid electrolytes (FSE) LaF3 (Eu2+ 0.8 mol %), LaF3 (Sr2+ 5 mol %), and CeF3 (Sr2+ 5 mol %) in contact with Ag, Bi, Si, La, Ce, and Sm working electrodes is studied by chronoamperometry and voltammetry with linear potential scan. Discovered is linear dependence of initial segments of potentiostatic transients of cathodic current on t 1/2 at FSE interfaces with Ag, Bi, La, Ce, and Sm. The dependence is due to diffusion-controlled instantaneous nucleation of Ln and Ce. The La3+ and Ce3+ reduction at the FSE/Ag interface is reversible in a narrow region. The reduction and oxidation of La3+ and Ce3+ (cations of the FSE rigid lattice) at the FSE/Me (Me = La, Ce and Sm, Bi, Si) interface is irreversible and involves a chemical reaction.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 662–672.Original Russian Text Copyright © 2005 by Turaeva, Kot, Urchukova, Murin.  相似文献   

6.
The complexation reactions between La3+, Y3+ and Ce3+ cations with the macrocyclic ligand, kryptofix 21, were studied in methanol-acetonitrile (MeOH-AN) and methanol-methylacetate (MeOHMeOAc) binary mixed solvent solutions at different temperatures using the conductometric method. The conductance data show that in most solvent systems, the kryptofix 21 forms a 1: 1 [M: L] complex with La3+, Y3+ and Ce3+ metal cations, but in the case of Y3+ cation in pure methylacetate, in addition of formation of a 1: 1 [ML] complex, 1: 2 [ML2] and 1: 3 [ML3] complexes are formed in solution. In the case of Ce3+cation, a 1: 1 [ML] and also a 1: 2 [ML2] complexes are formed in this solvent system at all studied temperatures. The electrical conductance data in acetonitrile, show that a 1: 1 [ML] and also a 1: 2 [ML2] complexes are formed between the ligand and La3+ and Ce3+ metal cations at different temperatures. The stability constants of the 1: 1 [ML] complexes were determined using the conductometric data and a computer program, GENPLOT. A non-monotonic relationship was observed between logK f of the 1: 1 complexes with the composition of the binary solvent solutions which was discussed in term of solvent-solvent interactions and also preferential solvation of the metal cations and the ligand in solutions. The selectivity order of the ligand for the metal cations in MeOH–AN and MeOH–MeOAc binary solvent solutions, at 25°C was found to be: Y3+ > La3+ > Ce3+ and La3+ > Y3+ > Ce3+, respectively. The values of the standard thermodynamic quantities (ΔH c ° and ΔS c ° ) for formation of the 1: 1 complexes were obtained from temperature dependence of the stability constans of the complexes and the results show that the thermodynamics of the complexation reactions between kryptofix 21 and La3+, Y3+ and Ce3+ cations, is affected by the nature and composition of the mixed solvents systems.  相似文献   

7.
Bismuth 8-quinolineselenolate Bi(C9H6NSe)3 was synthesized. The molecular and crystal structure of this compound was determined by X-ray diffraction structural analysis. The effect of replacing the ligand atoms Se→S and the role of the unshared electron pair on the formation of the coordination polyhedron of the central bismuth atom in bismuth(III) 8-quinolineselenolate and bismuth(III) 8-quinolinethiolate, which are complexes of a Group V p-element in an incomplete valence state was discussed. Dedicated to the memory of Academician Yurii Bankovsky, the founder of the chemistry of 8-mercaptoquinoline (December 22, 1927–January 28, 2003) on the occasion of the eightieth anniversary of his birth. __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 12, pp. 1866–1874, December, 2007.  相似文献   

8.
Compared to other oxide materials, the sol-gel deposition of an optically transparent LiNbO3 waveguiding film of sufficient thickness (approx. 1?μm) is complicated by the presence of a highly hydrolyzing Nb(V) in the starting solution. Thicker films require more concentrated solutions that are not easily achieved for such ions. This problem may be solved using strong chelating agents such as water-soluble polymers. To prepare a stable Er(III)/Yb(III)/Li(I)/Nb(V)/2-methoxyethanol solution with high metal concentration, we tested three such polymers: polyethylene glycol (PEG), polyacrylic acid (PAA) and polyvinyl alcohol (PVA), and compared them with already used polyvinylpyrrolidone (PVP). The solutions were spin-coated on crystalline sapphire substrates under a multi-step heating-deposition regime. Apart from Er3+/Yb3+ photoluminescence properties, we evaluated the influence of the film microstructure (SEM, AFM) on optical transparency and waveguiding ability in the UV/Vis/NIR region (transmission and m-line spectroscopy). Among the newly tested polymers, only PEG was able to prevent Nb(V) hydrolysis up to a maximum metal concentration of 0.6?mol/L. For PEG and PVP, the crystallization temperature of the deposited films (between 700?°C and 1000?°C) was compared. After further optimization of the heating-deposition process, we were able to prepare a transparent Er3+/Yb3+:LiNbO3 film thick enough to guide an optical signal in the NIR region. Thus, the use of PEG results is one of the very few non-hydrolytic sol-gel methods suitable for the preparation of not only luminescent, but also waveguiding Er3+/Yb3+:LiNbO3 structures.  相似文献   

9.
Enthalpy of the complex formation between diglycine (HL±) and Ce3+ or La3+ at 308.15 K and ionic strength of 0.5 mol/L (KNO3) has been determined by means of calorimetry. Thermodynamic parameters of the diglycine complexes formation with Ce3+ and La3+ at different metal to ligand molar ratios have been determined.  相似文献   

10.
P(1-VIm-co-MMA) copolymers with 4 or 44 wt.% 1-VIm (abbreviated PVM-4 and PVM-44) where polymerized from 1-VIm (1-vinylimidazole) and methylmethacrylate with azobisisobutyronitrile as initiator and reacted with either Cu2+ or Zn2+. The resulting coordinated polymer complexes were studied using ICP-AES, CP/MAS 13C NMR, conductivity measurements, vibrational spectroscopy (mid-FTIR and far-FTIR), DSC, and EPR. It was established by ICP-AES, CP/MAS 13C NMR, conductivity, mid-FTIR and EPR measurements that the transition metal ions in the complexes were exclusively coordinated by the imidazole ligand. The coordination geometry is square planar with regard to Cu(II) complexes. The strong interaction between the polymeric imidazole ligand and the transition metal ion cross-links the system, resulting in augmentation of T g (the glass transition temperature), especially for copolymers with high relative amount of 1-VIm. The effect of changing metal ion is more complicated and depends on both the strength of the coordinate interaction as well as the coordination number. The solubility of the coordinate polymer complex in conventional solvents is low due to the coordinate cross-links. However, the coordinate polymer complexes are soluble in strongly coordinating solvents such as acetonitrile and dimethylsulfoxide.  相似文献   

11.
The crystal structures of general composition nBi2O3-mB2O3 were analyzed and systematized with the use of the structures of borate groups. Based on the CNs calculated by the bond valence method, the shapes of bismuth coordination polyhedra derived from an octahedron were suggested. A correlation was found between the number of BO3 triangles and BO4 tetrahedra in borate groups, the average CN of Bi atoms, and the degree of distortion of Bi polyhedra as a function of the m: n ratio, as well as between the polarity of BO4 tetrahedra and noncentrosymmetry of the structures. The role of Bi3+ with the active E pair in the manifestation of specific features of the forms of bismuth polyhedra and the types of connection of boron polyhedra was elucidated.  相似文献   

12.
The coordination modes and thermodynamic stabilities of the complexes of the cysteine-rich N-terminal domain fragment of the ZIP13 zinc transporter (MPGCPCPGCG-NH(2)) with Zn(2+), Cd(2+), Bi(3+), and Ni(2+) have been studied by potentiometric, mass spectrometric, NMR, CD, and UV-vis spectroscopic methods. All of the studied metals had similar binding modes, with the three thiol sulfurs of cysteine residues involved in metal ion coordination. The stability of the complexes formed in solution changes in the series Bi(3+) ? Cd(2+) > Zn(2+) > Ni(2+), the strongest being for bismuth and the weakest for nickel. The N-terminal fragment of the human metalothionein-3 (MDPETCPCP-NH(2)) and unique histidine- and cysteine-rich domain of the C-terminus of Helicobacter pyroli HspA protein (Ac-ACCHDHKKH-NH(2)) have been chosen for the comparison studies. It confirmed indirectly which groups were the anchoring ones of ZIP13 domain. Experimental data from all of the used techniques and comparisons allowed us to propose possible coordination modes for all of the studied ZIP13 complexes.  相似文献   

13.
The electrochemical properties of n-sulfonatothiacalyx[4]arene (H4XNa4) complexes with [Co(dipy)3]3+ and Fe3+ ions were studied by means of cyclic voltammetry in aqueous solution at pH 2.5. The observed single-electron reduction of [Co(dipy)3]3+ bound extraspherically to the upper rim and Fe3+ ion bound intraspherically to the lower rim of n-sulfonatothiacalyx[4]arene in binary [Co(dipy)3]3+ · H3X5?, H3X5? · Fe3+, and ternary [Co(dipy)3]3+ · H3X5? · Fe3+ heterometal complexes was more difficult than in the free state. The reversible single-electron transfer to the metal ion results in lower binding energy ([Co(dipy)3]3+, ΔΔG 0 = 3.9 kJ/mol) or in full fast dissociation of the complex (Fe3+). The ternary complex in the solution forms the aggregates, in which inner encapsulated Fe(III) and Co(III) ions are not reduced on the electrode. Their quantitative reduction takes place by the relay mechanism of intra- and intermolecular electron transfer through electrochemically generated [Co(dipy)3]2+ outer ions.  相似文献   

14.
Bismuth 2-methyl-8-quinolineselenolate, Bi[C9H5(CH3)NSe]3, was synthesized. X-ray analysis was used to determine the structure of this complex. The crystal chemistry of bismuth(III), antimony(III), and arsenic(III) 2-methyl-8-quinolineselenolates and 2-methyl-8-quinolinethiolates was discussed relative to the effect of going from Se to S as the ligand atoms and presence of a methyl group at C-2 of the quinoline system and unshared electron pair of the central atom in the complex.  相似文献   

15.
It was studied by spectroscopy that PSII reaction center complex consisting of three polypeptides, D1, D2 and Cytb559, were purified from PSII particle of CeCl3 treated spinach. The results of the experiment show that Ce3+ could improve the growth of spinach, and accelerate electron transport of PSII particles. Of chl-a of UV-Vis spectrum of D1/D2/Cytb559 complex, Soret band was blue-shifted by 3 nm and Q band by 2 nm, respectively, and the fluorescence emission peak was blue-shifted by 5 nm in CeCl3-treated spinach compared with the one in control. By the extended X-ray absorption fine structure (EXAFS) spectroscopy methods, it has been found that Ce3+ is coordinated with 8 nitrogen atoms in the first coordination shell with Ce-N bond length of 0.253 nm, and Ce3+ with 6 oxygen atoms in the second coordination shell with Ce-O bond length of 0.32 nm. However, the secondary structure of D1/D2/Cytb559 complex by circular dichroism (CD) spectroscopy has no significant change after CeCl3 treated. It might be that Ce3+ binds to porphyrin rings of chlorophyll and oxygen of amino acid residue of polypeptide in D1/D2/Cytb559 complex, and then accelerates the primary reaction of PSII, intensifies function of P680+ primary electron donor of D1/D2/Cytb559, but there is little change in conformation of PSII reaction center complex.  相似文献   

16.
Heavy metal ions are highly toxic species which can cause long-term damage to biological systems. These species are known to disrupt biological events at the cellular level, cause significant oxidative damage, and are carcinogens. The production of simple, in-field detection methods that are highly sensitive for these cations is highly desirable in response to global pollution. In that regard, bio-inspired colorimetric sensing systems have been developed to detect Hg2+ and Pb2+, and other cations, down to nmol L−1 concentrations. The benefits of these systems, which are reviewed herein, include cost-effective production, facile usage, and a visual color change for the detection method. Such advantages are significant positive steps for heavy metal ion detection, especially in regions where sophisticated laboratory studies are prohibited. Figure Biological-based colorimetric detection of heavy metal cations. The materials on the left are independent Au nanoparticles in solution, functionalized with heavy metal binding biomolecules, which, upon metal addition, aggregate to evolve a detectable solution color change.
Marc R. KnechtEmail:
  相似文献   

17.
Cationic metal ion-coordinated N-diisopropyloxyphosphoryl dipeptides (DIPP-dipeptides) were analyzed by electrospray ionization multistage tandem mass spectrometry (ESI-MS n ). Two novel rearrangement reactions with hydroxyl oxygen or carbonyl oxygen migrations were observed in ESI-MS/MS of the metallic adducts of DIPP-dipeptides, but not for the corresponding protonated DIPP-dipeptides. The possible oxygen migration mechanisms were elucidated through a combination of MS/MS experiments, isotope (18O, 15N, and 2H) labeling, accurate mass measurements, and density functional theory (DFT) calculations at the B3LYP/6-31 G(d) level. It was found that lithium and sodium cations catalyze the carbonyl oxygen migration more efficiently than does potassium and participation through a cyclic phosphoryl intermediate. In addition, dipeptides having a C-terminal hydroxyl or aromatic amino acid residue show a more favorable rearrangement through carbonyl oxygen migration, which may be due to metal cation stabilization by the donation of lone pair of the hydroxyl oxygen or aromatic π-electrons of the C-terminal amino acid residue, respectively. It was further shown that the metal ions, namely lithium, sodium, and potassium cations, could play a novel directing role for the migration of hydroxyl or carbonyl oxygen in the gas phase. This discovery suggests that interactions between phosphorylated biomolecules and proteins might involve the assistance of metal ions to coordinate the phosphoryl oxygen and protein side chains to achieve molecular recognition.  相似文献   

18.
Formation of the metal is observed under irradiation of methanol-containing aqueous solutions of cadmium salts with accelerated electrons. The process of precipitation of the metal and its properties was examined. The radiation-chemical yield is (1.7 ± 0.2) × 10–2 g kGy. The efficiency of the radiation-induced reduction of a number of other metals in aqueous media: copper, lead, and thallium, was substantiated. The method may be promising for obtaining deposits of pure and amorphous metals from aqueous solutions of their salts and for purification of aqueous effluents containing these toxic metals.  相似文献   

19.
Enthalpies of complex formation for glycine (HL±) with Ce3+ and Er3+ ions at 298.15 K and the value of the ionic strength of 0.5 (KNO3) are determined by calorimetric means using two independent procedures. Thermodynamic characteristics of the reactions of formation for complexes of glycine with Ce3+ and Er3+ ions at various [metal]: [ligand] molar ratios are calculated.  相似文献   

20.
Electron capture dissociation (ECD) and electron transfer dissociation (ETD) in metal-peptide complexes are dependent on the metal cation in the complex. The divalent transition metals Ni2+, Cu2+, and Zn2+ were used as charge carriers to produce metal-polyhistidine complexes in the absence of remote protons, since these metal cations strongly bind to neutral histidine residues in peptides. In the case of the ECD and ETD of Cu2+-polyhistidine complexes, the metal cation in the complex was reduced and the recombination energy was redistributed throughout the peptide to lead a zwitterionic peptide form having a protonated histidine residue and a deprotonated amide nitrogen. The zwitterion then underwent peptide bond cleavage, producing a and b fragment ions. In contrast, ECD and ETD induced different fragmentation processes in Zn2+-polyhistidine complexes. Although the N–Cα bond in the Zn2+-polyhistidine complex was cleaved by ETD, ECD of Zn2+-polyhistidine induced peptide bond cleavage accompanied with hydrogen atom release. The different fragmentation modes by ECD and ETD originated from the different electronic states of the charge-reduced complexes resulting from these processes. The details of the fragmentation processes were investigated by density functional theory.
Graphical Abstract ?
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号