首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work capillary electrophoresis (CE) with UV detection has been applied to the analysis of different natural toxins produced in the aquatic environment. This technique is presented as an alternative to other chemical techniques such as HPLC, and the optimisation of analytical methodologies was carried out for diverse marine toxins including Paralytic and Amnesic and some polyether toxins, such as Yessotoxins, as well as for certain microcystin toxins produced by cyanobacteria present in freshwaters. Sample preparation steps were optimised and adequate electrophoretic conditions developed for achieving a complete separation of compounds with similar structures involved in such contamination. The influence of the biological matrices where they are involved has also been studied and the potential use of CE-UV as a tool for monitoring these aquatic toxins is also discussed.  相似文献   

2.
Analysis of paralytic shellfish poisons by capillary electrophoresis   总被引:3,自引:0,他引:3  
A capillary electrophoresis (CE) method with UV detection is described for the separation and determination of underivatized toxins associated with paralytic shellfish poisoning (PSP). Confirmation of the electrophoretic peaks was facilitated by mass spectrometric (MS) detection using an ionspray CE-MS interface and by high-performance liquid chromatography with fluorescence detection. The determination of PSP toxins, such as saxitoxin and neosaxitoxin, in toxic dinoflagellates and scallops is demonstrated and comparisons are made with existing techniques.  相似文献   

3.
The application of capillary electrophoresis-mass spectrometry (CE-MS) to the analysis of compounds of concern to the aquaculture industry is reported. Two different approaches to coupling the CE column to an IonSpray atmospheric pressure ionization (API) interface, viz., a liquid-junction and a coaxial arrangement, are describe and compared with regard to ruggedness, ease of use, sensitivity and electrophoretic performance. The different injection modes used in three commercial capillary electrophoresis systems were also evaluated for their applicability to CE-MS. The use of CE-MS for the analysis of a variety of classes of antibiotics used in the fish aquaculture industry, such as the sulfonamides and their potentiators (e.g., trimethoprim), is demonstrated and was used to confirm the presence of these components in shellfish extracts at the low ppm level. CE-MS was also applied to the analysis of marine toxins such as saxitoxin and its analogues which are associated with paralytic shellfish poisoning, and also the toxins responsible for amnesic and diarrheic shellfish poisoning. Tandem mass spectrometry (MS-MS) was used to provide structural information on these analytes, and the ability to distinguish isomeric compounds based on their different migration and fragmentation characteristics using CE-MS-MS is demonstrated.  相似文献   

4.
Microcystins, which have their origin in species of cyanobacteria present in freshwaters, have recently been found to be important contaminants of the aquatic environment at trace levels. HPLC and HPCE with UV detection have been applied in the determination of such toxic compounds. Immunoaffinity chromatography for the selective extraction and clean-up of microcystins has been successfully applied to different matrices. Simple protocols for unambiguous determination of these toxins are presented and the immunoaffinity clean-up is compared with conventionally used solid phase extraction procedures. The development and optimisation of an on-line preconcentration procedure based on field amplified sample stacking for the analysis of microcystins by HPCE in the micellar electrokinetic chromatography mode is also described, using borate buffer with the anionic surfactant SDS, as separation electrolyte. Results indicate that sub-nanogram/gram content of microcystins can be detected in water samples, while sub-microgram/gram concentrations can be determined in algae samples.  相似文献   

5.
A review and discussion of the chromatographic separation of marine organic pollutants is given, including sampling and clean-up procedures, fractionation and enrichment of marine pollutants, capillary gas chromatography (cGC) and high-performance liquid chromatography applying both classical and chiral stationary phases. The potential of multi-dimensional cGC for the analysis of marine organic trace pollutants is discussed for polychlorinated biphenyls (PCBs). The chromatographic separation of coplanar PCBs and of the enantiomers of chiral pollutants provides a further insight into the toxic potential of these marine organic pollutants.  相似文献   

6.
Paralytic shellfish toxins (PSTs) are produced by marine and freshwater microalgae and accumulate in shellfish including mussels, oysters, and scallops, causing possible fatalities when inadvertently consumed. Monitoring of PST content of shellfish is therefore important for food safety, with currently approved methods based on HPLC, using pre‐ or postcolumn oxidation for fluorescence detection (HPLC‐FLD). CE is an attractive alternative for screening and detection of PSTs as it is compatible with miniaturization and could be implemented in portable instrumentation for on‐site monitoring. In this study, CE methods were developed for C4D, FLD, UV absorption detection, and MS—making this first report of C4D and FLD for PSTs detection. Because most oxidized toxins are neutral, MEKC was used in combination with FLD. The developed CZE‐UV and CZE‐C4D methods provide better resolution, selectivity, and separation efficiency compared to CZE‐MS and MEKC‐FLD. The sensitivity of the CZE‐C4D and MEKC‐FLD methods was superior to UV and MS, with LOD values ranging from 140 to 715 ng/mL for CZE‐C4D and 60.9 to 104 ng/mL for MEKC‐FLD. With the regulatory limit for shellfish samples of 800 ng/mL, the CZE‐C4D and MEKC‐FLD methods were evaluated for the screening and detection of PSTs in shellfish samples. While the CZE‐C4D method suffered from significant interferences from the shellfish matrix, MEKC‐FLD was successfully used for PST screening of a periodate‐oxidized mussel sample, with results confirmed by HPLC‐FLD. This confirms the potential of MEKC‐FLD for screening of PSTs in shellfish samples.  相似文献   

7.
Kvasnicka F 《Electrophoresis》2007,28(20):3581-3589
CE is a family of electrokinetic separation techniques that separate compounds based upon differences in electrophoretic mobilities, phase partitioning, pI, molecular size, or a combination of one or several of these properties. CE has been used in several modes to analyze and characterize a wide variety of analytes from simple inorganic ions, small organic molecules, peptides, proteins, nucleic acids to virus, microbes and particles. Food consists of a complex mixture of a variety of components, many of which are biologically active. Components classified as "nutrients" are essential for growth, maintenance, and repair of the body. Other food constituents, typically occurring in small quantities, are classified as "biologically active substances" and they have beneficial or harmful effects on human health. There are two types of biologically active substances in food - naturally occurring and food additives. The bioactive compounds of food that will be mentioned in this review are inorganic and organic acids, amino acids, vitamins, phenolic compounds, biogenic amines, antinutrients, toxins, etc. This review is focused on the application of CE with hydrodynamically closed system (suppression of EOF) for the analysis of the above-mentioned compounds. CE can be an alternative method to HPLC or other methods for analysis of bioactive compounds in food. The main advantages of CE are low running cost (at least ten times than HPLC) and consideration to environment (hundreds of microliters of diluted water based electrolyte per analysis).  相似文献   

8.
The analysis of biological samples (e.g., blood, urine, saliva, tissue homogenates) by capillary electrophoresis (CE) requires efficient sample preparation (i.e., concentration and clean-up) procedures to remove interfering solutes (endogenous/exogenous and/or low-/high-molecular-mass), (in)organic salts and particulate matter. The sample preparation modules can be coupled with CE either off-line (manual), at-line (robotic interface), on-line (coupling via a transfer line) or in-line (complete integration between sample preparation and separation system). Sample preparation systems reported in the literature are based on chromatographic, electrophoretic or membrane-based procedures. The combination of automated sample preparation and CE is especially useful if complex samples have to be analyzed and helps to improve both selectivity and sensitivity. In this review, the different modes of solid-phase (micro-) extraction will be discussed and an overview of the potential of chromatographic, electrophoretic (e.g., isotachophoresis, sample stacking) and membrane-based procedures will be given.  相似文献   

9.
The capillary electrophoretic (CE) separation of the enantiomers of three binaphthyl compounds is investigated. Several CE modes such as cyclodextrin (CD) modified capillary zone electrophoresis (CZE) (CD-CZE), micellar electrokinetic chromatography (MEKC), cyclodextrin electrokinetic chromatography (CD-EKC), etc. are employed for the simultaneous enantiomer separation of the three solutes. The successful separation was achieved by combining two modes, in other words by using more than two chiral selectors. A development of the CE enantiomer separation is demonstrated for the binaphthyl compounds. The enantioselectivity of binaphthyl compounds is alo briefly discussed.  相似文献   

10.
Lo CK  Paau MC  Xiao D  Choi MM 《Electrophoresis》2008,29(11):2330-2339
An effective capillary electrophoretic technique for separating samples of negatively charged, polydisperse, water-soluble gold monolayer-protected cluster (Au MPC) protected by monolayers of N-acetyl-L-cysteine has been developed. The separation mechanisms of the Au MPC in CZE suggest that the larger core sizes Au MPC emerge first from the capillary. The electrophoretic separation depends on pH, buffer concentration, and organic modifiers. The addition of aliphatic alcohols to the run buffer can improve the separation of Au MPC by reducing the EOF and changing the selectivity between the Au MPCs. The enhancement of resolution is attributed to the more significant difference in the charge-to-size ratio between the Au MPCs. The run buffer containing 20 v/v % ethanol provides the best separation for water-soluble Au MPC. Our proposed CE method provides a powerful tool to evaluate and separate the water-soluble Au MPC products.  相似文献   

11.
In this work, a new, easy and rapid method of analyzing phenolic compounds in pollen extract, based on capillary electrophoresis coupled with electrospray ionization time-of-flight-mass spectrometry (CE–ESI–TOF–MS), has been developed. A systematic investigation of separation parameters has been performed with respect to resolution, sensitivity, analysis time and peak shape. The electrophoretic parameters and electrospray conditions must be optimized to obtain reproducible analyses. Using this method, several important phenolic compounds such as acetin-glucoside, 7-O-methylherbacetin-3-sophoroside, galloyl-glucose, quercetin-3-sophoroside, apigenin-6,8-di-C-glycoside, quercetin-3-rutinoside, genistein-7-O-β-D-glucoside, luteolin-7-O-glucoside, apigenin-7-O-glucoside and 2′,4′,6′-trihydroxy-3′-formyldihydrochalcone have been determined directly from pollen extract. The efficiency, the rapidity, the small amounts of sample required, and the high resolution of CE coupled with the sensitivity, the selectivity, the accurate masses and the true isotopic patterns obtained using TOF-MS point to the potential of this approach for identifying the phenolic compounds present in pollen.  相似文献   

12.
The azaspiracids are a family of lipophilic polyether marine biotoxins that have caused a number of human intoxication incidents in Europe since 1995 after consumption of contaminated shellfish (Mytilus edulis). Levels of azaspiracids in shellfish for human consumption are monitored in accordance with EU guidelines: only shellfish with less than 160 μg kg−1 are deemed safe. The limited availability of commercially available standards for azaspiracids is a serious problem, because validated LC–MS methods are required for routine analysis of these toxins in shellfish tissues. The procedure described herein has been used for the separation and the isolation of four azaspiracid (AZA) toxins from shellfish, for use as LC–MS–MS reference materials. Five separation steps have been used to isolate azaspiracids 1, 2, 3, and 6. The purity of the toxins obtained has been confirmed by multiple mass spectrometric methods using authentic azaspiracid standards. The same techniques have been used for quantification of the toxins extracted. The isolation procedure involves several chromatographic purification techniques: solid-phase extraction (diol sorbent, 90% mass reduction, and 95 ± 1% toxin recovery); Sephadex size-exclusion chromatography (87% mass reduction and up to 95 ± 2% toxin recovery), Toyopearl HW size-exclusion chromatography (90% mass reduction and up to 92.5 ± 2.5% toxin recovery), and semi-preparative LC (78 ± 3% toxin recovery). The procedure effectively separates the toxins from the sample matrix and furnishes azaspiracid toxins (AZA1, AZA2, AZA3 and AZA6) of sufficient purity with an average yield of 65% (n = 5). Triple-quadrupole mass spectrometry was used for qualitative and quantitative monitoring of the isolation efficiency after each stage of the process. High-resolution mass spectrometric evaluation of the toxic isolated material in both positive and negative modes suggests high purity.  相似文献   

13.
Phycotoxins.     
The 1997-1998 period brought many new developments to the phycotoxin field. There were several reviews on phycotoxins in general, on their toxicological evaluation, and on their analysis. The ecophysiology, biosynthesis, and metabolism of polyether toxins and paralytic shellfish poisoning (PSP) toxins were also reviewed. The proceedings of the Eighth International Conference on Harmful Algae (Vigo, Spain, June 25-29, 1997) have been published and provide an excellent source of information on phycotoxins and toxic plankton bloom research. In addition, the much anticipated proceedings of the IX International IUPAC Symposium on Mycotoxins and Phycotoxins (Rome, Italy, May 27-31, 1996) have been published. Further evidence was provided to support the theory that Prorocentrum lima is the source organism for diarrhetic shellfish poisoning (DSP) toxins in Nova Scotian shellfish. In another study, different Prorocentrum species and isolates were analyzed for DSP toxins. In addition to detecting some new compounds, such as a DTX1 isomer, it was found that toxins were produced by both axenic and nonaxenic batch cultures, indicating that bacteria are probably not involved in the biosynthesis. The source organism for the spirolides, a family of fast-acting toxins reported from Nova Scotia, Canada, was determined to be Alexandrium ostenfeldii, a species that is found worldwide. The biogenetic origin of yessotoxin was reported to be Protoceratium reticulatum, another widely occurring organism. A great deal of attention and research funding has been directed at the serious problems associated with Pfiesteria piscicida. Analysts are eagerly awaiting publication of toxin structures, which will then allow the development of analytical methods. An incident of the mass mortality of California sea lions was reported in the Monterey area in May 1998. Analyses of tissue and urine samples revealed the presence of domoic acid. High levels of domoic acid were also found in anchovies and sardines, a common food source of sea lions. This is reminiscent of an incident of mass bird mortality in 1992 in the same region. Toxicological studies of domoic acid continue with one investigation on the effect of pH on toxicity in the mouse assay and others examining toxic effects in rats and cynomolgus monkeys. A study on the uptake and depuration of domoic acid in the Dungeness crab was reported. On October 20, 1997, EU (European Union) directive CE97/61 established a regulatory limit of 20 ppm for domoic acid in European shellfish, the same level as in North America. A detailed study on the oral toxicity of DSP toxins in mice was reported. Recent work by several researchers has revealed the genotoxic potential of okadaic acid and other DSP toxins. Previous work had clearly demonstrated the tumor-promoting potential of DSP toxins, but this recent evidence, which shows mutations in the progeny of okadaic acid-treated cells and the formation of DNA-adducts, increases concerns over the hazards associated with DSP-contaminated shellfish. The toxicology of yessotoxin was evaluated by Ogino et al. The toxin showed weak cytotoxicity, but was not orally lethal to mice at 10 mg/kg, and did not cause intestinal fluid accumulation, inhibition of protein phosphatase 2A (PP2A), or hemolytic effects. Similarly, Tubaro et al. saw no evidence for diarrheogenicity of homoyessotoxin isolated from mussels and from the proposed planktonic producer, Lingulodinium polyedrum. All this provides further evidence that yessotoxin should not be classed as a DSP toxin. A number of new toxins have been detected and identified. Two analogues of yessotoxin, homoyessotoxin, and 45-hydroxyhomoyessotoxin were isolated from mussels of the Adriatic Sea and identified by Satake et al. A recent DSP event in Ireland associated with cultured mussels led to the identification of azaspiracid, a unique marine toxin with spiro ring assemblies. (ABSTRACT TRUNCATED)  相似文献   

14.
田苗苗  杨丽 《色谱》2020,38(10):1143-1153
毛细管电泳技术具有操作简单、样品消耗量少、分离效率高和分析速度快等优势,不仅是一种高效的分离分析技术,而且已经发展成为在线酶分析和酶抑制研究的强有力工具。酶反应全程的实时在线监测,可以实现酶反应动力学过程的高时间分辨精确检测,以更准确地获得反应机制和反应速率常数,有助于更好地了解酶反应机制,从而更全面深入地认识酶在生物代谢中的功能。此外,准确、快速的在线酶抑制剂高通量筛选方法的发展,对加快酶抑制类药物的研发以及疾病的临床诊断亦具有重要意义。电泳媒介微分析法(EMMA)和固定化酶微反应器(IMER)是毛细管电泳酶分析技术中常用的在线分析方法。这两种在线酶分析法的进样方式通常为流体动力学进样和电动进样,无法实现酶反应过程中的无干扰序列进样分析。近年来,基于快速序列进样的毛细管电泳序列分析技术已经发展成为在线酶分析的另一种强有力手段,以实现高时间分辨和高通量的酶分析在线检测。该文从快速序列进样的角度,综述了近年来毛细管电泳序列分析技术在线酶分析的研究进展,并着重介绍了各种序列进样方法及其在酶反应和酶抑制反应中的应用,包括光快门进样、流动门进样、毛细管对接的二维扩散进样、流动注射进样、液滴微流控进样等。  相似文献   

15.
This paper reviews the application of CE to the analysis of small-molecule pharmaceuticals. The areas of pharmaceutical analysis covered are enantiomer separation, the analysis of small molecules such as amino acids or drug counter-ions, pharmaceutical assay, determination of related substances and physicochemical measurements such as log P and pK(a) of compounds. The different electrophoretic modes available and their advantages for pharmaceutical analysis are described. Recent applications of CE for each subject area are tabulated with electrolyte details.  相似文献   

16.
A review is presented on the use of charged cyclodextrins (CDs) as chiral selectors in capillary electrophoresis (CE) for the separation of analytes in pharmaceutical analysis. An overview is given of theoretical models that have been developed for a better prediction of the enantiomeric resolution and for a better understanding of the separation mechanism. Several types of charged CDs have been used in chiral capillary electrophoretic separation (anionic, cationic, and amphoteric CDs). Especially the anionic CDs seem to be valuable due to the fact that many pharmaceutically interesting compounds can easily be protonated (e.g., amine groups). For that reason several anionic CDs are now commercially available. Cationic and amphoteric CDs are less common in chiral analysis and only a few are commercially available. Attention is paid to the most common synthesis routes and the characterization of the CDs used in chiral capillary electrophoretic separations. The degree of substitution in the synthesized CDs may vary from one manufacturer to another or even from batch to batch, which may have a detrimental effect on the reproducibility and ruggedness of the separation system. In Sections 4, 5, and 6 the applications of anionic, cationic, and amphoteric CDs for the chiral separation in CE are described. Many interesting examples are shown and the influence of important parameters on the enantioselectivity is discussed.  相似文献   

17.
DNA adducts are regarded as individual internal dosimeters for the exposure to chemical carcinogens. To date, the most sensitive method for DNA adduct analysis is the radioactive 32P-postlabeling method, which allows the detection of one adduct in 10(10) unmodified nucleotides in microg amounts of DNA. However, this technique suffers from disadvantages such as working with radioactive phosphorus and time-consuming chromatographic separation procedures. In addition, the simultaneous detection of adducts from different classes of carcinogens in a DNA sample is difficult. In order to overcome these drawbacks, we are developing a new detection method, comprising fluorescence labeling of DNA adducts, capillary electrophoretic (CE) separation, and on-line detection by monitoring laser-induced fluorescence (LIF). So far, we have evaluated the separation power and the detection limit of CE with fluorescently labeled standard compounds such as unmodified nucleotides or alkylated thymidines. For this purpose, we developed a universal method for labeling 5'-OH-mononucleosid-3'-dicyanoethyl-phosphates with fluorescent dyes based on the phosphoramidite technology for DNA synthesis. The separation of N3-methylated, N3-, O2- and O4-butylated thymidines from the unmodified nucleotide within a few minutes recommends CE-LIF as a powerful method for DNA adduct analysis.  相似文献   

18.
This article reviews progress in the application of electrophoretic techniques for the separation of nanoparticles. Numerous types of nanoparticles have recently been synthesised and integrated into different products and procedures. Consequently, analytical methods for the efficient characterisation of nanoparticles are now required. Several studies have revealed that gel electrophoresis can readily be used for separating nanoparticles according to their size or shape. However, many other studies focused on separation of nanoparticles by CE. In some cases nanoparticles could be separated by CZE, simply using pure buffer as the BGE. In other studies, buffer additives (most often SDS) were used, enabling fast separations of metallic nanoparticles by size. Other CE methods also allowed for separation of nanoparticle conjugates with biomolecules. Dielectrophoresis is yet another electrophoretic technique useful in separation and characterisation of nanoparticles; particularly nanotubes. Detection methods often used after electrophoretic separation include UV/Vis absorption and fluorescence spectroscopy. Examples of recent and relevant older reports are presented here. The authors conclude that electrophoretic methods for nanoanalysis can provide inexpensive and efficient tools for quality assurance and safety control; and as a consequence, they can augment transfer of nanotechnologies from research to industry.  相似文献   

19.
Most liquid chromatography (LC) mass spectrometric (MS) methods used for routine monitoring of lipophilic marine toxins focus on the analysis of the 13 toxins that are stated in European Union legislation. However, to date over 200 lipophilic marine toxins have been described in the literature. To fill this gap, a screening method using LC coupled to high resolution (HR) orbitrap MS (resolution 100 000) for marine lipophilic toxins has been developed. The method can detect a wide variety of okadaic acid (OA), yessotoxin (YTX), azaspiracid (AZA) and pectenotoxin (PTX) group toxins. To build a library of toxins, shellfish and algae samples with various toxin profiles were obtained from Norway, Ireland, United Kingdom, Portugal and Italy. Each sample extract was analyzed with and without collision induced dissociation fragmentation. Based on their mass and specific fragmentation pattern, 85 different toxins were identified comprising 33 OA, 26 YTX, 18 AZA and 8 PTX group toxins. A major complication of full scan HRMS is the huge amount of data generated (file size), which restricts the possibility of a fast search. A software program called metAlign was used to reduce the orbitrap MS data files. The 200-fold reduced data files were screened using an additional software tool for metAlign: ‘Search_LCMS’. A search library was constructed for the 85 identified toxins. The library contains information about compound name, accurate mass, mass deviation (<5 ppm), retention time (min) and retention time deviation (<0.2 min). An important feature is that the library can easily be exchanged with other instruments as the generated metAlign files are not brand-specific. The developed screening procedure was tested by analyzing a set of known positive and blank samples, processing them with metAlign and searching with Search_LCMS. A toxin profile was determined for each of the contaminated samples. No toxins were found in the blank sample, which is in line with the results obtained for this sample in the routine monitoring program (rat bioassay and tandem LC–MS).  相似文献   

20.
Two methods are presented for the quantitative capillary electrophoretic (CE) determination of phenolic lignin degradation compounds as well as of inorganic anions and organic acids in Kraft black liquors. Important phenolic lignin degradation compounds can be rapidly separated by co-electroosmotic CE after acidification of the liquors and subsequent extraction of the compounds with chloroform. A capillary electrophoretic separation of phenolic compounds is performed by using a phosphate/borate electrolyte system and UV detection at 214 nm. In addition, a HPLC method using a gradient with water, methanol, and acetic acid is also developed. Inorganic ions which are of importance to the pulping process can be determined by simply diluting the black liquors after sampling and subsequent analysis with a chromate electrolyte system and indirect UV detection at 185 nm. In addition, the concentration of low molecular aliphatic carboxylic acids can be determined simultaneously within the same run. By method optimization it is possible to separate the anions within one minute and, at the same time, to increase the resolution of the solutes. The electrolyte systems for the CE separations were optimized by varying the pH value and by adding organic solvents. Short separation times are obtained by adding a polycationic EOF modifier (hexadimethrine bromide) to the electrolyte which reverses the electroosmotic flow. A migration of the anionic analytes in the same direction as the electroosmotic flow is thus established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号