首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We analytically derive a correlated approach for a mixed semiclassical many particle dynamics, treating a fraction of the degrees of freedom by the multitrajectory semiclassical initial value method of Herman and Kluk [Chem. Phys. 91, 27 (1984)] while approximately treating the dynamics of the remaining degrees of freedom with fixed initial phase space variables, analogously to the thawed Gaussian wave packet dynamics of Heller [J. Chem. Phys. 62, 1544 (1975)]. A first application of this hybrid approach to the well studied Secrest-Johnson [J. Chem. Phys. 45, 4556 (1966)] model of atom-diatomic collisions is promising. Results close to the quantum ones for correlation functions as well as scattering probabilities could be gained with considerably reduced numerical effort as compared to the full semiclassical Herman-Kluk approach. Furthermore, the harmonic nature of the different degrees of freedom can be determined a posteriori by comparing results with and without the additional approximation.  相似文献   

2.
We have simulated the photoisomerization dynamics of azobenzene, taking into account internal conversion and geometrical relaxation processes, by means of a semiclassical surface hopping approach. Both n-->pi* and pi-->pi* excitations and both cis-->trans and trans-->cis conversions have been considered. We show that in all cases the torsion around the N==N double bond is the preferred mechanism. The quantum yields measured are correctly reproduced and the observed differences are explained as a result of the competition between the inertia of the torsional motion and the premature deactivation of the excited state. Recent time-resolved spectroscopic experiments are interpreted in the light of the simulated dynamics.  相似文献   

3.
A previously developed nonadiabatic semiclassical surface hopping propagator [M. F. Herman J. Chem. Phys. 103, 8081 (1995)] is further studied. The propagator has been shown to satisfy the time-dependent Schrodinger equation (TDSE) through order h, and the O(h2) terms are treated as small errors, consistent with standard semiclassical analysis. Energy is conserved at each hopping point and the change in momentum accompanying each hop is parallel to the direction of the nonadiabatic coupling vector resulting in both transmission and reflection types of hops. Quantum mechanical analysis and numerical calculations presented in this paper show that the h2 terms involving the interstate coupling functions have significant effects on the quantum transition probabilities. Motivated by these data, the h2 terms are analyzed for the nonadiabatic semiclassical propagator. It is shown that the propagator can satisfy the TDSE for multidimensional systems by including another type of nonclassical trajectories that reflect on the same surfaces. This h2 analysis gives three conditions for these three types of trajectories so that their coefficients are uniquely determined. Besides the nonadiabatic semiclassical propagator, a numerically useful quantum propagator in the adiabatic representation is developed to describe nonadiabatic transitions.  相似文献   

4.
We present a new approach for calculating quantum time correlation functions for systems whose dynamics exhibits relevant nonadiabatic effects. The method involves partial linearization of the full quantum path-integral expression for the time correlation function written in the nonadiabatic mapping Hamiltonian formalism. Our analysis gives an algorithm which is both numerically efficient and accurate as we demonstrate in test calculations on the spin-boson model where we find results in good agreement with exact calculations. The accuracy of our new approach is comparable to that of calculations performed using other approximate methods over a relatively broad range of model parameters. However, our method converges relatively quickly when compared with most alternative schemes. These findings are very encouraging in view of the application of the new method for studying realistic nonadiabatic model problems in the condensed phase.  相似文献   

5.
We present a simple and rigorous proof of a ‘Gutzwiller type’ trace formula, using semiclassical formulas for the propagation of coherent states.  相似文献   

6.
A globally uniform time-independent semiclassical wave function for nonadiabatic scattering is presented. This wave function, which takes the form of a surface-hopping expansion, is motivated by the globally uniform semiclassical wave function of Kay and co-workers for the single-surface case. The surface-hopping expansion is similar to a previously presented primitive semiclassical wave function for nonadiabatic problems. This earlier wave function has the important feature that it correctly incorporates all phase terms, allowing for an accurate treatment of quantum interference effects. The globally uniform expression has important numerical advantages over the primitive formulation. The globally uniform wave function does not have caustic singularities, and the globally uniform calculation avoids a root search for trajectories obeying double-ended boundary conditions that is required by the primitive semiclassical calculation.  相似文献   

7.
Dioxetanes are a class of high energy molecules that show unique ability to dissociate thermally onto excited state products. Quite recently, it attracts much attention due to their role in what is known as “dark secondary metabolite”. The present work, presents a comprehensive investigation of the photochemical and photophysical properties of 1,2-dioxetane. Several post HF-methods were utilized. The behavior of the excited states of 1,2-dioxetane, was explored by simulating the ultra-violet photoabsorption spectrum and nonadiabatic dynamics of 1,2-dioxetane. Simulation of the photoabsorption spectrum was performed within the nuclear ensemble approximation, sampling a Wigner distribution with 500 points; whereas, the surface hopping approach was utilized to simulate the dynamics. Dynamic simulations have been started in two different spectral windows centered at 7.5 and 9.0 eV, corresponding to populations of states S6 and S7, respectively. The time domain for such simulations is 100 fs. The dynamics in the spectral window centered about 7.5 eV show 24% probability to originate from excited state 6 (nO-σ*CO) suggesting the dissociation of the C–O bonds. Whereas, dynamics in the spectral windows centered about 9.0 eV, show 67% probability to originate from state 7 (nO-σ*OO) predicting an O–O dissociation.  相似文献   

8.
9.
A nonseparable semiclassical transition state approximation for reactions involving more than one electronic surface is suggested. The single surface formulation in terms of quasiprobability distributions used by Miller is discussed along with a separable semiclassical approximation for the nonadiabatic rate suggested in the Soviet literature. A thermally averaged nonadiabatic rate is defined, and a semiclassical approximation is presented, wherein the surface through which flux is calculated in the transition state approach is determined by the intersection of adiabatic electronic surfaces viewed as functions of imaginary (or complex) time.  相似文献   

10.
11.
The derivation of a semiclassical surface hopping procedure from a formally exact solution of the Schrodinger equation is discussed. The fact that the derivation proceeds from an exact solution guarantees that all phase terms are completely and accurately included. Numerical evidence shows the method to be highly accurate. A Monte Carlo implementation of this method is considered, and recent work to significantly improve the statistical accuracy of the Monte Carlo approach is discussed.  相似文献   

12.
The non-relativistic quantum dynamics of nuclei and electrons is solved within the framework of quantum hydrodynamics using the adiabatic representation of the electronic states. An on-the-fly trajectory-based nonadiabatic molecular dynamics algorithm is derived, which is also able to capture nuclear quantum effects that are missing in the traditional trajectory surface hopping approach based on the independent trajectory approximation. The use of correlated trajectories produces quantum dynamics, which is in principle exact and computationally very efficient. The method is first tested on a series of model potentials and then applied to study the molecular collision of H with H(2) using on-the-fly TDDFT potential energy surfaces and nonadiabatic coupling vectors.  相似文献   

13.
There have been quite a few attempts in recent years to provide an initial value coherent state representation for the imaginary time propagator exp(-betaH). The most notable is the recent time evolving Gaussian approximation of Frantsuzov and Mandelshtam [J. Chem. Phys. 121, 9247 (2004)] which may be considered as an expansion of the imaginary time propagator in terms of coherent states whose momentum is zero. In this paper, a similar but different expression is developed in which exp(-betaH) is represented in a series whose terms are weighted phase space averages of coherent states. Such a representation allows for the formulation of a new and simplified forward-backward semiclassical initial value representation expression for thermal correlation functions.  相似文献   

14.
We present a combination of time-dependent density functional theory with the quantum mechanical/molecular mechanical approach which can be applied to study nonadiabatic dynamical processes in molecular systems interacting with the environment. Our method is illustrated on the example of ultrafast excited state dynamics of indole in water. We compare the mechanisms of nonradiative relaxation and the electronic state lifetimes for isolated indole, indole in a sphere of classical water, and indole + 3H(2)O embedded in a classical water sphere. In the case of isolated indole, the initial excitation to the S(2) electronic state is followed by an ultrafast internal conversion to the S(1) state with a time constant of 17 fs. The S(1) state is long living (>30 ps) and deactivates to the ground state along the N-H stretching coordinate. This deactivation mechanism remains unchanged for indole in a classical water sphere. However, the lifetimes of the S(2) and S(1) electronic states are extended. The inclusion of three explicit water molecules opens a new relaxation channel which involves the electron transfer to the solvent, leading eventually to the formation of a solvated electron. The relaxation to the ground state takes place on a time scale of 60 fs and contributes to the lowering of the fluorescence quantum yield. Our simulations demonstrate the importance of including explicit water molecules in the theoretical treatment of solvated systems.  相似文献   

15.
VILLAR  H.O.  CASTRO  E.A.  ROSSI  R.A. 《化学学报》1987,45(4):334-339
研究了芳族自由基负离子裂解反应中沿着反应坐标两个势能超曲面可能存在交叉点的问题.结果表明,沿着该反应坐标可能发生内转换.利用Landau-Zerner模型,研究了通过非绝热带的跃迁几率,并定性地将之与分解速率常数作了比较.  相似文献   

16.
A justification is given for the validity of a nonadiabatic surface hopping Herman-Kluk (HK) semiclassical initial value representation (SC-IVR) method. The method is based on a propagator that combines the single surface HK SC-IVR method [J. Chem. Phys. 84, 326 (1986)] and Herman's nonadiabatic semiclassical surface hopping theory [J. Chem. Phys. 103, 8081 (1995)], which was originally developed using the primitive semiclassical Van Vleck propagator. We show that the nonadiabatic HK SC-IVR propagator satisfies the time-dependent Schrodinger equation to the first order of variant Planck's over 2pi and the error is O(variant Planck's over 2pi(2)). As a required lemma, we show that the stationary phase approximation, under current assumptions, has an error term variant Planck's over 2pi(1) order higher than the leading term. Our derivation suggests some changes to the previous development, and it is shown that the numerical accuracy in applications to Tully's three model systems in low energies is improved.  相似文献   

17.
Alternative treatments of quantum and semiclassical theories for nonadiabatic dynamics are presented. These treatments require no derivative couplings and instead are based on overlap integrals between eigenstates corresponding to fast degrees of freedom, such as electronic states. Derived from mathematical transformations of the Schr?dinger equation, the theories describe nonlocal characteristics of nonadiabatic transitions. The idea that overlap integrals can be used for nonadiabatic transitions stems from an article by Johnson and Levine [Chem. Phys. Lett. 13, 168 (1972)]. Furthermore, overlap integrals in path-integral form have been recently made available by Schmidt and Tully [J. Chem. Phys. 127, 094103 (2007)] to analyze nonadiabatic effects in thermal equilibrium systems. The present paper expands this idea to dynamic problems presented in path-integral form that involve nonadiabatic semiclassical propagators. Applications to one-dimensional nonadiabatic transitions have provided excellent results, thereby verifying the procedure. In principle these theories that are presented can be applied to multidimensional systems, although numerical costs could be quite expensive.  相似文献   

18.
A proton transfer reaction in a linear hydrogen-bonded complex dissolved in a polar solvent is studied using mixed quantum-classical Liouville dynamics. In this system, the proton is treated quantum mechanically and the remainder of the degrees of freedom is treated classically. The rates and mechanisms of the reaction are investigated using both adiabatic and nonadiabatic molecular dynamics. We use a nonadiabatic dynamics algorithm which allows the system to evolve on single adiabatic surfaces and on coherently coupled pairs of adiabatic surfaces. Reactive-flux correlation function expressions are used to compute the rate coefficients and the role of the dynamics on the coherently coupled surfaces is elucidated.  相似文献   

19.
Classical and semiclassical methods are developed to calculate and invert the wave packet motion measured in pump-probe experiments. With classical propagation of the Wigner distribution of the initial wave packet created by the pump pulse, we predict the approximate probe signal with slightly displaced recurrence peaks, and derive a set of first-order canonical perturbation expressions to relate the temporal features of the signal to the characteristics of the potential surface. A reduced dynamics scheme based on the Gaussian assumption leads to the correct center of mass motion but does not describe the evolution of the shape of the wave packet accurately. To incorporate the quantum interference into classical trajectories, we propose a final-value representation semiclassical method, specifically designed for the purpose of computing pump-probe signals, and demonstrate its efficiency and accuracy with a Morse oscillator and two kinetically coupled Morse oscillators. For the case of one-color pump probe, a simple phase-space quantization scheme is devised to reproduce the temporal profile at the left-turning point without actual wave packet propagation, revealing a quantum mechanical perspective of the nearly classical pump-probe signal.  相似文献   

20.
Nonadiabatic wave-packet dynamics is factorized into purely adiabatic propagation and instantaneous localized nonadiabatic transition. A general formula is derived for the quantum-mechanical local nonadiabatic operator which is implemented within the framework of the R-matrix method. The operator can be used for incorporating the nonadiabatic transition in semiclassical wave-packet dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号