首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a full dimensional, ab initio-based global potential energy surface (PES) and dipole moment surface for Cl-H2O. Both surfaces are symmetric with respect to interchange of the H atoms. The PES is a fit to thousands of electronic energies calculated using the coupled-cluster method [CCSD(T)] with a moderately large basis (aug-cc-pVTZ). Vibrational energies and wave functions are accurately obtained using MULTIMODE. The wave function and dipole moment surface are used to calculate and analyze the pure infrared spectrum at 0 K which is compared with experiment. Vibrational energies and the infrared spectra for DOD and HOD/DOH are also presented.  相似文献   

2.
An accurate global potential-energy surface (PES) is reported for H5(+) based on more than 100,000 CCSD(T)/aug-cc-pVTZ ab initio energies. This PES has full permutational symmetry with respect to interchange of H atoms and dissociates to H3(+) and H2. Ten known stationary points of H5(+) are characterized and compared to previous ab initio calculations. Quantum diffusion Monte Carlo calculations are performed on the PES to obtain the zero-point energy of H5(+) and the anharmonic dissociation energy (D0) of H5(+) --> H3(+) + H2. The rigorous zero-point state of H4D+ is also calculated and discussed within the context of a strictly classical approach to obtain the branching ratio of the reaction H4D+ --> H3(+) + HD and H2D+ + H2. Such an approach is taken using the PES and critiqued based on the properties of the quantum zero-point state. Finally, a simple procedure for adding the long range-interaction energy is described.  相似文献   

3.
Six-dimensional quantum dynamical calculations are reported for the dissociative chemisorption of (v=0, 1, j=0) H(2) on Cu(100), and for rovibrationally inelastic scattering of (v=1, j=1) H(2) from Cu(100). The dynamics results were obtained using a new potential-energy surface (PES5), which was based on density-functional calculations using a slab representation of the adsorbate-substrate system and a generalized gradient approximation to the exchange-correlation energy. A very accurate method (the corrugation reducing procedure) was used to represent the density-functional theory data in a global potential-energy surface. With the new, more accurately fitted PES5, the agreement between the dynamics results and experimental results for reaction and rovibrationally elastic scattering is not as good as was obtained with a previous potential-energy surface (PES4), which was based on a subset of the density-functional theory data not yet including the results for the low-symmetry Cu sites. Preliminary density-functional theory results suggest that the agreement between theory and experiment will improve over that obtained with PES5 if the density-functional calculations are repeated using a larger basis set and using more copper layers than employed in PES4 and PES5.  相似文献   

4.
The six-dimensional (6D) potential energy surface (PES) for the H(2) molecule interacting with a clean Ru(0001) surface has been computed accurately for the first time. Density functional theory (DFT) and a pseudopotential based periodic plane-wave approach have been used to calculate the electronic interactions between the molecule and the surface. Two different generalized gradient approximation (GGA) exchange-correlation functionals, PW91 and RPBE, have been adopted. Based on the DFT/GGA calculated potential energies, an analytical 6D PES has been constructed using the corrugation reducing procedure. A very accurate representation of the DFT/GGA data has been achieved, with an average error in the interpolation of about 3 meV and a maximum error not larger than about 30 meV. The top site is found to be the most reactive site for both functionals used, but PW91 predicts a higher reactivity than RPBE, with lower-energy and earlier-located dissociation barriers. The energetic corrugation displayed by the RPBE PES is larger than the PW91 PES while the geometric corrugation is smaller. The differences between the two PESs increase as the distance of the molecular center of mass to the surface decreases. A direct comparison with experimental investigations on H(2)/Ru(0001) could shed light on the suitability of these XC potentials often used in DFT calculations.  相似文献   

5.
A full-dimensional, ab initio based potential energy surface (PES) for CH(5)(+), which can describe dissociation is reported. The PES is a precise fit to 36173 coupled-cluster [CCSD(T)] calculations of electronic energies done using an aug-cc-pVTZ basis. The fit uses a polynomial basis that is invariant with respect to permutation of the five H atoms, and thus describes all 120 equivalent minima. The rms fitting error is 78.1 cm(-1) for the entire data set of energies up to 30,000 cm(-1) and a normal-mode analysis of CH(5)(+) also verifies the accuracy of the fit. Two saddle points have been located on the surface as well and compared with previous theoretical work. The PES dissociates correctly to the fragments CH(3)(+) + H(2) and the equilibrium geometry and normal-mode analyses of these fragments are also presented. Diffusion Monte Carlo calculations are done for the zero-point energies of CH(5)(+) (and some isotopologs) as well as for the separated fragments of CH(5)(+), CH(3)(+) + H(2) and those of CH(4)D(+), CH(3)(+) + HD and CH(2)D(+) + H(2). Values of D(0) are reported for these dissociations. A molecular dynamics calculation of CH(4)D(+) dissociation at one total energy is also performed to both validate the applicability of the PES for dynamics studies as well as to test a simple classical statistical prediction of the branching ratio of the dissociation products.  相似文献   

6.
An eight-dimensional time-dependent quantum dynamics wave packet approach is performed for the study of the H2+C2H-->H+C2H2 reaction system on a new modified potential energy surface (PES) [L.-P. Ju et al., Chem. Phys. Lett. 409, 249 (2005)]. This new potential energy surface is obtained by modifying Wang and Bowman's old PES [J. Chem. Phys. 101, 8646 (1994)] based on the new ab initio calculation. This new modified PES has a much lower transition state barrier height at 2.29 kcal/mol than Wang and Bowman's old PES at 4.3 kcal/mol. This study shows that the reactivity for this diatom-triatom reaction system is enhanced by vibrational excitations of H2, whereas the vibrational excitations of C2H only have a small effect on the reactivity. Furthermore, the bending excitations of C2H, compared to the ground state reaction probability, hinder the reactivity. The comparison of the rate constant between this calculation and experimental results agrees with each other very well. This comparison indicates that the new modified PES corrects the large barrier height problem in Wang and Bowman's old PES.  相似文献   

7.
We report an ab initio-based global potential energy surface for H+CH4 that describes the abstraction and exchange reactions. The PES, which is invariant with respect to any permutation of five H atoms, is a fit to 20,728 electronic energies calculated using the partially spin-restricted coupled-cluster method (RCCSD(T)) with a moderately large basis (aug-cc-pVTZ). A first set of quasiclassical trajectory calculations using this PES are reported for the H+CD4-->HD+CD3 reaction at collision energies of 0.65 and 1.52 eV and are compared to experiment and recent direct dynamics calculations done with density functional theory.  相似文献   

8.
We report a new "spectroscopic" potential energy surface (PES) of formaldehyde (H(2)(12)C(16)O) in its ground electronic state, obtained by refining an ab initio PES in a least-squares fitting to the experimental spectroscopic data for formaldehyde currently available in the literature. The ab initio PES was computed using the CCSD(T)/aug-cc-pVQZ method at 30 840 geometries that cover the energy range up to 44 000 cm(-1) above equilibrium. Ro-vibrational energies of formaldehyde were determined variationally for this ab initio PES by means of the program TROVE [Theoretical ROtation-Vibration Energies; S. N. Yurchenko, W. Thiel, and P. Jensen, J. Mol. Spectrosc. 245, 126 (2007)]. The parameter values in the analytical representation of the PES were optimized in fittings to 319 ro-vibrational energies with J = 0, 1, 2, and 5. The initial parameter values in the fittings were those of the ab initio PES, the ro-vibrational eigenfunctions obtained from this PES served as a basis set during the fitting process, and constraints were imposed to ensure that the refined PES does not deviate unphysically from the ab initio one in regions of configuration space not sampled by the experimental data. The resulting refined PES, referred to as H(2)CO-2011, reproduces the available experimental J ≤ 5 data with a root-mean-square error of 0.04 cm(-1).  相似文献   

9.
Sulfonated polyethersulfone (SPES) and poly (acrylonitrile-co-acrylic acid-co-vinyl pyrrolidone) (P(AN-AA-VP)), which provided sulfonic acid (SO(3)H) and carboxylic acid groups (COOH), respectively, were used to modify polyethersulfone (PES) membrane with a heparin-like surface by blending method. The SPES was prepared by sulfonation of PES using chlorosulfonic acid as the sulfonating agent, while the P(AA-AN-VP) was prepared through a free radical polymerization. The PES and modified PES membranes were prepared by a phase-inversion technique; the modified membranes showed lowered protein (bovine serum albumin, BSA; bovine serum fibrinogen, FBG) adsorption and suppressed platelet adhesion. For the modified membranes, significant decreases in thrombin-antithrombin (TAT) generation, percentage platelets positive for CD62p expression, and the complement activation on C3a and C5a levels were observed compared with those for the pure PES membrane. Due to the similar negatively charged groups as heparin, the modified membranes effectively prolonged the activated partial thromboplastin time (APTT). Furthermore, the modified membranes showed good cytocompatibility. Hepatocytes cultured on the modified materials exhibited improved functional profiles in terms of scanning electron microscope (SEM) observation and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay compared with those on the pure PES membrane. It could be concluded that the modified membranes with sulfonic acid and carboxylic acid groups were endowed with excellent biocompatibility, and the heparin-like surface modification seemed to be a promising approach to improve the biocompatibility of materials.  相似文献   

10.
We present density functional theory calculations for atomic hydrogen interacting with a stepped surface, the Pt(211) surface. The calculations have been performed at the generalized gradient approximation level, using a slab representation of the surface. This is the state-of-the-art method for calculating the interaction of atoms or molecules with metal surfaces, nevertheless only few studies have used it to study atoms or molecules interacting with stepped surfaces, and none, to the best of our knowledge, have considered hydrogen interacting with stepped platinum surfaces. Our goal has been to initiate a systematic study of this topic. We have calculated the full three-dimensional potential energy surface (PES) for the H/Pt(211) system together with the vibrational band structure and vibrational eigenfunctions of H. A deep global minimum of the PES is found for bridge-bonded hydrogen on the step edge, in agreement with experimental results for the similar H/Pt(533) system. All the local vibrational excitations at the global minimum have been identified, and this will serve as a helpful guide to the interpretation of future experiments on this (or similar) system(s). Furthermore, from the calculated PES and vibrational band structure, we identify a number of consequences for the interpretation or modelling of diffusion experiments studying the coverage and directional dependence of atomic hydrogen diffusion on stepped platinum surfaces.  相似文献   

11.
Potential energy surface (PES) intersection seams of two or more electronic states from the 1 1A', 2 1A', 3 1A', 1 1A", and 2 1A" states in the C(1D)H2 reactive system are investigated using the internally contracted multireference configuration interaction method and the aug-cc-pVQZ basis set. Intersection seams with energies less than 20 kcal/mol relative to the C(1D) + H2 asymptote are searched systematically, and finally several seam lines (at the linear H-C-H, linear C-H-H, and C(2v), geometries, respectively) and a seam surface (at Cs geometries) are discovered and determined. The minimum energy crossing points on these seams are reported and the influences of the PES intersections, in particular, conical intersections, on the CH2 spectroscopy and the C(1D) + H2 reaction dynamics are discussed. In addition, geometries and energies of the 1 1A2 and 1 1B2 states of methylene biradical CH2 are reported in detail for the first time.  相似文献   

12.
Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcalmol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively.  相似文献   

13.
The reactivity and decomposition kinetics on the C(7)H(6) potential energy surface (PES) were investigated, determining structures of stationary points at the B3LYP/6-31+G(d,p) level and energies at the CCSD(T)/cc-pVTZ level with extension to the complete basis set limit. For the reactions characterized by a significant multireference character, the energies were calculated at the CASPT2/cc-pVTZ level. The portion of the PES investigated consisted of 27 wells connected by 39 saddle points. Of the 27 wells, 16 can be accessed through transition states having activation energies smaller than the dissociation threshold. In agreement with previous theoretical studies, it was found that the main interconversion channel takes place on the singlet PES and connects phenylcarbene, cycloheptatetrane, spiroheptatriene, fulvenallene, and three ethynylcyclopentadiene isomers. Two new mechanisms are proposed for the formation of 5-ethynylcyclopentadiene and for the conversion of spiroheptatriene to fulvenallene. The unimolecular decomposition kinetics was thoroughly investigated. It was found that the fastest high pressure decomposition channel, at the temperatures at which C(7)H(6) undergoes unimolecular decomposition (1500--2000 K), leads to the formation of cyclopentadienylidene and acetylene. The rate of crossing from the singlet to the triplet PES may affect considerably this reaction channel, as it is formally spin forbidden. The alternative pathway, which is the decomposition to fulvenallenyl, is however only a factor of 2--3 slower and significantly less activated (82 vs 96 kcal/mol).  相似文献   

14.
Full-dimensional ab initio potential energy surface (PES) and dipole moment surface (DMS) are reported for H(5)O(2) (+). Tens of thousands of coupled-cluster [CCSD(T)] and second-order Moller-Plesset (MP2) calculations of electronic energies, using aug-cc-pVTZ basis, were done. The energies were fit very precisely in terms of all the internuclear distances, using standard least-square procedures, however, with a fitting basis that satisfies permutational symmetry with respect to like atoms. The H(5)O(2) (+) PES is a fit to 48 189 CCSD(T) energies, containing 7962 polynomial coefficients. The PES has a rms fitting error of 34.9 cm(-1) for the entire data set up to 110 000 cm(-1). This surface can describe various internal floppy motions, including the H atom exchanges, monomer inversions, and monomer torsions. First- and higher-order saddle points have been located on the surface and compared with available previous theoretical work. In addition, the PES dissociates correctly (and symmetrically) to H(2)O+H(3)O(+), with D(e)=11 923.8 cm(-1). Geometrical and vibrational properties of the monomer fragments are presented. The corresponding global DMS fit (MP2 based) involves 3844 polynomial coefficients and also dissociates correctly.  相似文献   

15.
The reaction path is shown to be always a gradient line on a potential energy surface (PES ) of a molecule. The properties of gradient lines on the PES are elucidated. Correct symmetry conservation rules along the gradient line are derived. The behavior of the gradient line on a PES with different topologies are considered. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
We have used a modified Shepard (MS) interpolation method, initially developed for gas phase reactions, to build a potential energy surface (PES) for studying the dissociative chemisorption of H2 on Pt(111). The aim was to study the efficiency and the accuracy of this interpolation method for an activated multidimensional molecule-surface reactive problem. The strategy used is based on previous applications of the MS method to gas phase reactions, but modified to take into account special features of molecule-surface reactions, like the presence of many similar reaction pathways which vary only slightly with surface site. The efficiency of the interpolation method was tested by using an already existing PES to provide the input data required for the construction of the new PES. The construction of the new PES required half as many ab initio data points as the construction of the old PES, and the comparison of the two PESs shows that the method is able to reproduce with good accuracy the most important features of the H2 + Pt(111) interaction potential. Finally, accuracy tests were done by comparing the results of dynamics simulations using the two different PESs. The good agreement obtained for reaction probabilities and probabilities for rotationally and diffractionally inelastic scattering shows clearly that the MS interpolation method can be used efficiently to yield accurate PESs for activated molecule-surface reactions.  相似文献   

17.
A new spectroscopically determined potential energy surface (PES) for HD(16)O is presented. This surface is constructed by adjusting the high accuracy ab initio PES of Polyansky et al. [Science 299, 539 (2003)] by fitting to both published experimental data and our still unpublished data. This refinement used experimentally derived term values up to 25,000 cm(-1) and with J< or =8: a data set of 3478 energy levels once some levels with ambiguous assignment is excluded. To improve the extrapolation properties of the empirical PES, the restraint that the resulting PESs remain close to the ab initio surface was imposed. The new HDO_07 PES reproduces the experimental data, including high J levels not included in the fit, with a root mean square error of 0.035 cm(-1). Predictions for rotation-vibration term values up to J=12 are made.  相似文献   

18.
We blended Pluronic F127 into polyethersulfone (PES) to improve surface properties of PES, which has been extensively used in biomaterial and other applications. The molecular surface structures of PES/Pluronic F127 blends have been investigated by sum-frequency generation (SFG) vibrational spectroscopy. The molecular orientation of surface functional groups of PES changed significantly when blended with a small amount of Pluornic F127. Pluronic F127 on the blend surface also exhibited different features upon contacting with water. The entanglement of PES chains with Pluronic F127 molecules rendered the blends with long-term surface stability in water in contrast to the situation where a layer of Pluronic F127 adsorbed on the PES surface. Atomic force microscopy (AFM) and quartz crystal microbalance (QCM) measurements were included to determine the relative amount of protein that adsorbed to the blend surfaces. The results showed a decreased protein adsorption amount with increasing Pluronic F127 bulk concentration. The correlations between polymer surface properties and detailed molecular structures obtained by SFG would provide insight into the designing and developing of biomedical polymers and functional membranes with improved fouling-resistant properties.  相似文献   

19.
Supersonic jet investigations of the (HBr)(2) dimer have been carried out using a tunable diode laser spectrometer to provide accurate data for comparison with results from a four-dimensional (4-D) ab initio potential energy surface (PES). The near-infrared nu(1) (+/-), nu(2) (+/-), and (nu(1)+nu(4))(-) bands of (H (79)Br)(2), (H (79)Br-H (81)Br), and (H (81)Br)(2) isotopomers have been recorded in the range 2500-2600 cm(-1) using a CW slit jet expansion with an upgraded near-infrared diode laser spectrometer. The 4-D PES has been calculated for (HBr)(2) using second-order M?ller-Plesset perturbation theory with an augmented and polarized 6-311G basis set. The potential is characterized by a global minimum occurring at the H bond structure with the distance between the center of masses (CM) of the monomer being R(CM)=4.10 A with angles theta(A)=10 degrees, theta(B)=100 degrees and a well depth of 692.2 cm(-1), theta(A) is the angle the HBr bond of monomer A makes with the vector from the CM of A to the CM of B, and theta(B) is the corresponding angle monomer B makes with the same CM-CM vector. The barrier for the H interchange occurs at the closed C(2h) structure for which R(CM)=4.07 A, theta(A)=45 degrees, theta(B)=135 degrees, and the barrier height is 73.9 cm(-1). The PES was fitted using a linear-least squares method and the rovibrational energy levels of the complex were calculated by a split pseudospectral method. The spectroscopic data provide accurate molecular parameters for the dimer that are then compared with the results predicted on the basis of the 4-D ab initio PES.  相似文献   

20.
A global potential energy surface (PES) corresponding to the ground state of AuH2 system has been constructed based on 22 853 ab initio energies calculated by the multireference configuration interaction method with a Davidson correction. The neural network method is used to fit the PES, and the root mean square error is only 1.87 meV. The topographical features of the novel global PES are compared with previous PES which is constructed by Zanchet et al. (Zanchet PES). The global minimum energy reaction paths on the two PESs both have a well and a barrier. Relative to the Au + H2 reactants, the energy of well is 0.316 eV on the new PES, which is 0.421 eV deeper than Zanchet PES. The calculation of Au(2S) + H2(X1Σg+) → AuH(X1Σ+) + H(2S) dynamical reaction is carried out on new PES, by the time‐dependent quantum wave packet method (TDWP) with second order split operator. The reaction probabilities, integral cross‐sections (ICSs) and differential cross‐sections are obtained from the dynamics calculation. The threshold in the reaction is about 1.46 eV, which is 0.07 eV smaller than Zanchet PES due to the different endothermic energies on the two PESs. At low collision energy (<2.3 eV), the total ICS is larger than the result obtained on Zanchet PES, which can be attributed to the difference of the wells and endothermic energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号