首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Precrystallization supercooled states in the benzene-naphthalene system were studied by thermal analysis methods. A sharp change in the character of the crystallization of benzene and naphthalene, from quasi-equilibrium without supercooling to nonequilibrium-explosive with supercooling depending on liquid phase superheating with respect to the temperature of fusion was observed. Such a transition occurred monotonically for alloys. The phase diagram of the benzene-naphthalene system including metastable regions with supercooling under normal crystallization conditions was constructed. The rules governing Gibbs energy changes and mean supercoolings in crystallization depending on the concentrations of the components were determined. The supercooling values were also used to calculate such nucleation parameters as the size of critical nuclei, work of their formation, and number of unit cells and molecules in them. The molecular structure of benzene and naphthalene crystals and the structural changes of these substances during fusion that influenced the character of their subsequent crystallization were described.  相似文献   

2.
This work deals with the nucleation of crystals in confined systems in response to the recent high interest in research on crystallization in emulsion and microemulsion droplets. In these confined systems, crystallization often occurs at high supercooling; thus, nucleation determines the overall crystallization process. A decrease in the volume of the confined mother phase leads to the higher supercooling needed for the phase transition. We have numerically solved kinetic equations in order to determine the conditions under which the first crystal nuclei are formed by homogeneous and heterogeneous nucleation from supercooled melt and supersaturated solution, depending on the volume of the mother phase. Supersaturation (or supercooling) increases with decreasing volume of the mother phase. The nucleation barrier depends linearly on the logarithm of volume of the mother phase in all cases under consideration, as follows from the numerical solution of kinetic equations.  相似文献   

3.
Grand canonical Monte Carlo simulations of adsorption of N2 and O2 and their mixtures in a model zeolitic cavity 14 Å in diameter were performed at 77.5 K for pressures ranging from zero up to saturation, where the adsorbed phase is in equilibrium with coexisting vapor and liquid phases. The same intermolecular potential functions were employed for gas-gas interactions in the vapor, liquid, and adsorbed phases. The gas-solid interaction potential includes dispersion-repulsion energy, induced electrostatic energy, and an ion-quadrupole term to model the interaction of the electric field in zeolites like NaX with polar molecules like N2. The simulation of the coexisting vapor and liquid phases reproduces the saturation properties of pure liquid oxygen and nitrogen at 77.5 K. Activity coefficients in the adsorbed phase derived from simulations as a function of cavity filling and composition show negative deviations from Raoult's law, even though the non-idealities in the bulk liquid phase have the opposite sign. The simulation of the surface excess isotherm for adsorption from liquid mixtures exhibits preferential adsorption of N2 and has the commonly-observed quadratic shape skewed toward the more strongly adsorbed component. Micropore condensation is observed for oxygen but not for nitrogen. The condensation of oxygen is similar to a first order phase transition but because of the small number of molecules that can fit into a micropore, coexistence of the two phases is replaced by oscillations between gas- and liquid-like densities.  相似文献   

4.
在经典的热力学理论基础上,探讨了磁场对聚合物本体结晶过程的成核与生长的影响,建立了相关结晶动力学理论方程.初步认为,磁场产生的"磁结晶效应"可能是由于晶相与非晶相之间磁化率差异导致了两相之间磁化能的差异,也可能由于聚合物体系在结晶前会形成一种有序相,减小了体系的熵值,进而改变了结晶过程中的体系自由能,影响其成核与晶体生长,乃至整个结晶动力学方程.利用Matlab软件结合PLLA的各结晶参数值,绘制了结晶自由能与各成核临界参数之间的函数图像.结果表明,在低过冷度下,较小的自由能扰动可能导致较大的晶核临界参数变化.  相似文献   

5.
Nonequilibrium melting and crystallization of a model Lennard-Jones system   总被引:3,自引:0,他引:3  
Nonequilibrium melting and crystallization of a model Lennard-Jones system were investigated with molecular dynamics simulations to quantify the maximum superheating/supercooling at fixed pressure, and over-pressurization/over-depressurization at fixed temperature. The temperature and pressure hystereses were found to be equivalent with regard to the Gibbs free energy barrier for nucleation of liquid or solid. These results place upper bounds on hysteretic effects of solidification and melting in high heating- and strain-rate experiments such as shock wave loading and release. The authors also demonstrate that the equilibrium melting temperature at a given pressure can be obtained directly from temperatures at the maximum superheating and supercooling on the temperature hysteresis; this approach, called the hysteresis method, is a conceptually simple and computationally inexpensive alternative to solid-liquid coexistence simulation and thermodynamic integration methods, and should be regarded as a general method. We also found that the extent of maximum superheating/supercooling is weakly pressure dependent, and the solid-liquid interfacial energy increases with pressure. The Lindemann fractional root-mean-squared displacement of solid and liquid at equilibrium and extreme metastable states is quantified, and is predicted to remain constant (0.14) at high pressures for solid at the equilibrium melting temperature.  相似文献   

6.
We investigate the dynamics of colloidal crystallization in a 32-particle system at a fixed value of interparticle depletion attraction that produces coexisting fluid and solid phases. Free energy landscapes (FELs) and diffusivity landscapes (DLs) are obtained as coefficients of 1D Smoluchowski equations using as order parameters either the radius of gyration or the average crystallinity. FELs and DLs are estimated by fitting the Smoluchowski equations to Brownian dynamics (BD) simulations using either linear fits to locally initiated trajectories or global fits to unbiased trajectories using Bayesian inference. The resulting FELs are compared to Monte Carlo Umbrella Sampling results. The accuracy of the FELs and DLs for modeling colloidal crystallization dynamics is evaluated by comparing mean first-passage times from BD simulations with analytical predictions using the FEL and DL models. While the 1D models accurately capture dynamics near the free energy minimum fluid and crystal configurations, predictions near the transition region are not quantitatively accurate. A preliminary investigation of ensemble averaged 2D order parameter trajectories suggests that 2D models are required to capture crystallization dynamics in the transition region.  相似文献   

7.
The crystallization of bacterial surface layer proteins (S-layer proteins) at phosphoethanolamine monolayers on aqueous (buffer) surfaces has been investigated with dual label fluorescence microscopy, FTIR spectroscopy, and electron microscopy. The phase state of the lipid exerts a marked influence on protein crystallization: when the surface monolayer is in the phase-separated state between the isotropic and anisotropic fluid phases, the S-layer protein is preferentially adsorbed at the isotropic phase. Protein crystals nucleate at the boundary lines between the coexisting lipid phases and crystallization proceeds underneath the anisotropic fluid. Crystal growth is much slower under the fluid lipid and the entire interface is overgrown only after prolonged protein incubation. In turn, as indicated by characteristic frequency shifts of the methylene stretch vibrations on the lipids, protein crystallization affects the order of the alkane chains and drives the fluid lipid into a state of higher order. Most probably, the protein does not interpenetrate the lipid surface monolayer and the coupling between protein and lipid occurs via the lipid head groups.  相似文献   

8.
Recent experimental studies [Z. Wu, B. Zhou, Z.B. Hu, Phys. Rev. Lett. 90 (2003) 048304] on an uncharged aqueous poly-N-isopropylacrylamide (PNIPAM) dispersion have shown that this microgel system is sensitive to temperature. This system was also experimentally found to be modeled quite well by microgel particles interacting via a hard-sphere repulsive plus an inverse power (temperature-dependent) attractive potential. To understand theoretically this thermally responsive PNIPAM dispersion, we apply a novel approach [G.F. Wang, S.K. Lai, Phys. Rev. E 70 (2004) 051402] to calculate its thermodynamic phase diagram. Differing from the conventional method in which the boundaries of the coexisting phases are the ultimate target, the present work places emphasis on crosshatching colloidal domains which include the homogeneous phase (gas, liquid or solid), two coexisting phases and perhaps also multi-phases in coexistence. Strategically, this was done by treating the coexisting phases as one composite system whose Helmholtz free energy density is written as the sum of constituent free energy densities each of which is weighed by its respective volume proportion. We show here that by minimizing the composite system's free energy density the phase-diagram domains can all be determined in addition to the phase boundaries customarily obtained by imposing the conditions of equal pressure and equal chemical potential. Also, we present the theoretically predicted phase diagram of PNIPAM dispersion and compare it with the one observed experimentally.  相似文献   

9.
We studied the interfacial tension between coexisting phases of aqueous solutions of dextran and polyethylene glycol. First, we characterized the phase diagram of the system and located the binodal. Second, the tie lines between the coexisting phases were determined using a method that only requires measuring the density of the coexisting phases. The interfacial tension was then measured by a spinning drop tensiometer over a broad range of polymer concentrations close to and above the critical point. In this range, the interfacial tension increases by 4 orders of magnitude with increasing polymer concentration. The scaling exponents of the interfacial tension, the correlation length, and order parameters were evaluated and showed a crossover behavior depending on the distance to the critical concentration. The scaling exponent of the interfacial tension attains the value 1.50 ± 0.01 further away from the critical point, in good agreement with mean field theory, but the increased value 1.67 ± 0.10 closer to this point, which disagrees with the Ising value 1.26. We discuss possible reasons for this discrepancy. The composition and density differences between the two coexisting phases, which may be taken as two possible order parameters, showed the expected crossover from mean field behavior to Ising model behavior as the critical point is approached. The crossover behavior of aqueous two-phase polymer solutions with increasing concentration is similar to that of polymer solutions undergoing phase separation induced by lowering the temperature.  相似文献   

10.
11.
The statistical mechanics of phase transitions in dense systems of polydisperse particles presents distinctive challenges to computer simulation and analytical theory alike. The core difficulty, namely, dealing correctly with particle size fractionation between coexisting phases, is set out in the context of a critique of previous simulation work on such systems. Specialized Monte Carlo simulation techniques and moment free energy method calculations, capable of treating fractionation exactly, are then described and deployed to study the fluid-solid transition of an assembly of repulsive spherical particles described by a top-hat "parent" distribution of particle sizes. The cloud curve delineating the solid-fluid coexistence region is mapped as a function of the degree of polydispersity δ, and the properties of the incipient "shadow" phases are presented. The coexistence region is found to shift to higher densities as δ increases, but does not exhibit the sharp narrowing predicted by many theories and some simulations.  相似文献   

12.
Protein crystallization conditions are usually identified by empirical screening methods because of the complexity of the process, such as the existence of nonequilibrium phases and the different crystal forms that may result from changes in solution conditions. Here the crystallization of a model protein is studied using computer simulation. The model consists of spheres that have both an isotropic interaction of short range and anisotropic interactions between patch-antipatch pairs. The free energy of a protein crystal is calculated using expanded ensemble simulations of the Einstein crystal, and NpT-Monte Carlo simulations with histogram reweighting are used to determine the fluid-solid coexistence. The histogram reweighting method is also used to trace out the complete coexistence curve, including multiple crystal phases, with varying reduced temperature, which corresponds to changing solution conditions. At a patch-antipatch interaction strength five times that of the isotropic interaction, the protein molecules form a stable simple cubic structure near room temperature, whereas an orientationally disordered face-centered-cubic structure is favored at higher temperatures. The anisotropic attractions also lead to a weak first-order transition between orientationally disordered and ordered face-centered-cubic structures at low temperature, although this transition is metastable. A complete phase diagram, including a fluid phase, three solid phases, and two triple points, is found for the six-patch protein model. A 12-patch protein model, consistent with the face-centered-cubic structure, leads to greater thermodynamic stability of the ordered phase. Metastable liquid-liquid phase equilibria for isotropic models with varying attraction tails are also predicted from Gibbs ensemble simulations.  相似文献   

13.
Recent evidence suggests that simple peptides can access diverse amphiphilic phases, and that these structures underlie the robust and widely distributed assemblies implicated in nearly 40 protein misfolding diseases. Here we exploit a minimal nucleating core of the Aβ peptide of Alzheimer's disease to map its morphologically accessible phases that include stable intermolecular molten particles, fibers, twisted and helical ribbons, and nanotubes. Analyses with both fluorescence lifetime imaging microscopy (FLIM) and transmission electron microscopy provide evidence for liquid-liquid phase separations, similar to the coexisting dilute and dense protein-rich liquid phases so critical for the liquid-solid transition in protein crystallization. We show that the observed particles are critical for transitions to the more ordered cross-β peptide phases, which are prevalent in all amyloid assemblies, and identify specific conditions that arrest assembly at the phase boundaries. We have identified a size dependence of the particles in order to transition to the para-crystalline phase and a width of the cross-β assemblies that defines the transition between twisted fibers and helically coiled ribbons. These experimental results reveal an interconnected network of increasing molecularly ordered cross-β transitions, greatly extending the initial computational models for cross-β assemblies.  相似文献   

14.
We studied the phase behavior of three coexisting phases in water/propanol/octaethyleneglycol mono dodecyl ether/heptane system at 45°C. A cone-like three-phase body was found in a composition tetrahedron. In the body aqueous and surfactant phases coexist in the presence of the third coexisting phase, an oil phase, with their loci of composition drawing a closed-loop on addition of propanol. The oil phase remains in an oil-rich region without major change in its composition. The roles of propanol are discussed by using hydrophile-lipophile balance and locations of critical tie lines. Propanol mainly plays two roles; one is as a lipophilic cosurfactant and the other is as a water-soluble cosolvent. The compositions of the critical end points were also determined by a method to use the critical tie line as a clue. In other systems the same pattern phase behavior was observed.  相似文献   

15.
Mixtures of a polar solute 4-n-pentyl-4'-cyanobiphenyl in a non-polar nematic solvent exhibit two separated low frequency dielectric relaxations for concentrations of the solute between 2 mol% and 20 mol% over a limited temperature range. This behaviour is attributed to coexisting nematic and smectic B phases, in which the polar solute probe has different relaxation frequencies. The observed dielectric spectra can be accurately fitted to two Debye-like relaxations, and the strengths of the absorptions are proportional to the amounts of the coexisting phases. A microscopic determination of the phase diagram confirms the assignment of the coexisting phases, and it is concluded that there is a preference of the dipolar probe molecule for the smectic B phase, which is induced as a result of solute-solvent interactions.  相似文献   

16.
We report hybrid Monte Carlo molecular simulation results on the crystallization of aluminum from the supercooled liquid. We simulate the entire crystallization process at P=1 atm and at temperatures 20% and 15% below the melting temperature. We demonstrate that crystallization takes place according to the same mechanism for the two degrees of supercooling considered in this work. We show that both nucleation and growth proceed into a random mixing of the hexagonal close packed structure and of the face centered cubic (fcc) phase, with a predominance of the stable fcc form. The concentration of icosahedral (Ih)-like atoms in the supercooled liquid is found to remain constant throughout nucleation and growth, showing that Ih-like atoms do not play an active role in the crystallization process. We also find that the crystallization mechanism of aluminum differs from that observed for simple fluids. While nucleation of simple fluids first proceeds into the metastable body centered cubic (bcc) phase, the fraction of bcc-like atoms in aluminum crystallites always remains very low.  相似文献   

17.
Applying the histogram Monte Carlo simulation method and the bond‐fluctuation model, various phase transitions in single‐polymer systems were investigated. The critical transition temperature (Θ point) in the coil‐globule collapse transition of a macromolecular chain is accurately determined. Finite‐size scaling results near the transition point are verified. The first‐order transition associated with the freezing/crystallization of a polymer at a temperature below the Θ point is also observed. The free energy profiles associated with these two transitions are explicitly computed. Furthermore, the unfolding phase transition associated with stretching a collapsed polymer chain is investigated. The free energy profile associated with the transition is explicitly computed. Results on the energy cumulants and free energy profiles provide direct evidences for the first‐order nature of the unfolding phase transition.  相似文献   

18.
To elucidate induced smectic A and smectic B phases in binary nematic liquid crystal mixtures, a generalized thermodynamic model has been developed in the framework of a combined Flory-Huggins free energy for isotropic mixing, Maier-Saupe free energy for orientational ordering, McMillan free energy for smectic ordering, Chandrasekhar-Clark free energy for hexagonal ordering, and phase field free energy for crystal solidification. Although nematic constituents have no smectic phase, the complexation between these constituent liquid crystal molecules in their mixture resulted in a more stable ordered phase such as smectic A or B phases. Various phase transitions of crystal-smectic, smectic-nematic, and nematic-isotropic phases have been determined by minimizing the above combined free energies with respect to each order parameter of these mesophases. By changing the strengths of anisotropic interaction and hexagonal interaction parameters, the present model captures the induced smectic A or smectic B phases of the binary nematic mixtures. Of particular importance is the fact that the calculated phase diagrams show remarkable agreement with the experimental phase diagrams of binary nematic liquid crystal mixtures involving induced smectic A or induced smectic B phase.  相似文献   

19.
We report on a molecular simulation study of the homogeneous nucleation of CO2 in the supercooled liquid at low pressure (P = 5 MPa) and for degrees of supercooling ranging from 32% to 60%. In all cases, regardless of the degree of supercooling, the structure of the crystal nuclei is that of the Pa3 phase, the thermodynamically stable phase. For the more moderate degree of supercooling of 32%, the nucleation is an activated process and requires a method to sample states of high free energy. In this work, we apply a series of bias potentials, which promote the ordering of the centers of mass of the molecules and allow us to gradually grow crystal nuclei. The reliability of the results so obtained is assessed by studying the evolution of the nuclei in the absence of any bias potential, and by determining their probability of growth. We estimate that the size of the critical nucleus, for which the probability of growth is 0.5, is approximately 240 molecules. Throughout the nucleation process, the crystal nuclei clearly exhibit a Pa3 structure, in apparent contradiction with Ostwald's rule of stages. The other polymorphs have a much larger free energy. This makes their formation highly unlikely and accounts for the fact that the nucleation of CO2 proceeds directly in the stable Pa3 structure.  相似文献   

20.
We study the effects of the size of polymer additives and ionic strength on the phase behavior of a nonglobular protein-immunoglobulin G (IgG)-by using a simple four-site model to mimic the shape of IgG. The interaction potential between the protein molecules consists of a Derjaguin-Landau-Verwey-Overbeek-type colloidal potential and an Asakura-Oosawa depletion potential arising from the addition of polymer. Liquid-liquid equilibria and fluid-solid equilibria are calculated by using the Gibbs ensemble Monte Carlo technique and the Gibbs-Duhem integration (GDI) method, respectively. Absolute Helmholtz energy is also calculated to get an initial coexisting point as required by GDI. The results reveal a nonmonotonic dependence of the critical polymer concentration rho(PEG) (*) (i.e., the minimum polymer concentration needed to induce liquid-liquid phase separation) on the polymer-to-protein size ratio q (equivalently, the range of the polymer-induced depletion interaction potential). We have developed a simple equation for estimating the minimum amount of polymer needed to induce the liquid-liquid phase separation and show that rho(PEG) (*) approximately [q(1+q)(3)]. The results also show that the liquid-liquid phase separation is metastable for low-molecular weight polymers (q=0.2) but stable at large molecular weights (q=1.0), thereby indicating that small sizes of polymer are required for protein crystallization. The simulation results provide practical guidelines for the selection of polymer size and ionic strength for protein phase separation and crystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号