首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
Angular correlation coefficients τ nl,n^′ l^′ [p] between linear momenta of an electron in a subshell nl and another electron in a subshell nl′ are studied for the 102 neutral atoms He through Lr in their ground states, where n and l are the principal and azimuthal quantum numbers, respectively. We theoretically find that electron momenta are negatively correlated or uncorrelated; τ nl,n^′ l^′ [p] < 0 when |ll′|=1, while τ nl,n^′ l^′ [p]=0 when |ll′| ≠ 1. Numerical examinations of the atoms show that except for the He–B atoms, negative correlations are largest between 1s and 2p subshells, which have the most diffuse electron distributions in momentum space.  相似文献   

2.
Mutual information is introduced as an electron correlation measure and examined for isoelectronic series and neutral atoms. We show that it possesses the required characteristics of a correlation measure and is superior to the behavior of the radial correlation coefficient in the neon series. A local mutual information, and related local quantities, are used to examine the local contributions to Fermi correlation, and to demonstrate and to interpret the intimate relationship between correlation and localization.  相似文献   

3.
A direct application of the Hirshfeld atomic partitioning (HAP) scheme is implemented for molecular electron momentum densities (EMDs). The momentum density contributions of individual atoms in diverse molecular systems are analyzed along with their topographical features and the kinetic energies of the atomic partitions. The proposed p-space HAP-based charge scheme does seem to possess the desirable attributes expected of any atoms in molecules partitioning. In addition to this, the main strength of the p-space HAP is the exact knowledge of the kinetic energy functional and the inherent ease in computing the kinetic energy. The charges derived from HAP in momentum space are found to match chemical intuition and the generally known chemical characteristics such as electronegativity, etc.  相似文献   

4.
The electron localizability indicator in momentum space is proposed as a functional of the same‐spin momentum pair density. This functional yields a discrete distribution of values, which are proportional to the charge needed to form a fixed very small fraction of a same‐spin electron pair. It resolves all atomic shells for the examined atoms (Li–Kr) with reasonable occupation numbers, especially in the valence region. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

5.
The momentum space properties of the ten-electron systems Ne, HF, H2O, NH3 and CH4 as well as those of CH3CH3, CH3NH2, CH3OH and FCH2OH were investigated using localized molecular orbitals (LMO) obtained from ab initio self-consistent-field (SCF) wavefunctions constructed from double zeta quality gaussain basis sets.Compton profiles of various LMO electron pairs (CC, CN, CO, CF; CH, NH, OH, FH bond pairs and C, N, O, F lone pairs) are tabulated. In order to understand the correspondence between the momentum and the coordinate space properties of those electron pairs, the concept of the size and the shape of an LMO electron pair charge distribution has been utilized. The use of the intermediate expectation values of pn is introduced for the purpose of interpreting the momentum space properties.The dependence of molecular property partitioning on different localization schemes and on different basis sets is also studied by using the H2O profile as an example.  相似文献   

6.
Since the overlap integral between two functions in position space is the same as the overlap integral between their counterparts in momentum space, there is an intimate connection between orthonormalization procedures in the two spaces. It is pointed out that in certain cases this situation can be used to simplify the orthogonalization.  相似文献   

7.
Electron correlation effects on the electronic structure of atoms were investigated by means of a variety of position and momentum space related properties such as radial one-electron densities and radial electron momentum densities, Compton profiles and radial electron pair distributions. The results were obtained from MR-SDCI wavefunctions utilizing very large basis sets and are discussed in a comparative manner, analysing characteristic features and trends.  相似文献   

8.
Summary Fukutome's group theoretical classification scheme for determinants, based on the transformation properties of the Fock-Dirac density matrix under spin rotations and time reversal, has been extended to momentum space. Particular attention is paid to the transformation properties of orbitals and density matrices under inversion in momentum space.  相似文献   

9.
The integrated Hellmann-Feynman theorem is used to derive a rigorous relation between the energy and the electron density in momentum space. Choosing the electron mass as a differential parameter, we obtain a formula corresponding to the Wilson-Frost formula in coordinate space. Analysing the mass-dependence of momentum density, we then show that the present formula is equivalent to one of the previous results deduced from the virial theorem. Use of the integral Hellmann-Feynman theorem is also discussed. Several illustrative examples are given for the calculation of energy from momentum density.  相似文献   

10.
Rigorous relations are derived between the electronic energy and the electron momentum density of a molecular system whose Hamiltonian takes the form ofg(λ)T({r}) +h(λ)V({r};{R}) and depends on a parameter λ.  相似文献   

11.
Rigorous upper and lower bounds to the atomic Compton profileJ(q) are obtained for any value of the momentum transferredq in terms of radial expectation values 〈p n 〉 of the atomic momentum density γ(p). In doing so, a procedure based on moment-theoretic techniques and Chebyshev inequalities has been used. This type of results can be employed to study the compatibility of diverse information obtained by using different models, techniques, numerical calculations or experimental data. The same method allows also to obtain approximations to the Compton profile and to bound other relevant characteristics ofJ(q). A comparison of the approximations with some previously known Maximum Entropy Approximations is done. In order to test the accuracy of the bounds, a numerical study of the results is carried out in a Hartree-Fock framework for atomic systems.  相似文献   

12.
A new correlation measure, the product of the Shannon entropy power and the Fisher information of the electron density, is introduced by analyzing the Fisher-Shannon information plane of some two-electron systems (He-like ions, Hooke's atoms). The uncertainty and scaling properties of this information product are pointed out. In addition, the Fisher and Shannon measures of a finite many-electron system are shown to be bounded by the corresponding single-electron measures and the number of electrons of the system.  相似文献   

13.
14.
Some fundamental aspects of bond polarity embedded in diatomic molecular orbitals are studied from the viewpoint of the electron distribution in momentum space. Electron momentum density is expressible as a product of one-center and oscillation terms, and the effect of polarity appears mainly in the latter term. Since the oscillation is not spherically symmetrical, the bond polarity is then related to the anisotropy of momentum distribution. In order to investigate this relation, directional ratios of momentum moments are introduced and their behaviors are examined for a model heteronuclear diatomic system.  相似文献   

15.
Molecular orbitals are presented in configuration and momentum representations. We propose to minimize large oscillations present in calculated momentum wavefunctions by cancelling position factor phases. We illustrate the distortion introduced by different electron translation factors and show continuum states and dynamical wavefunctions in momentum coordinates. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

16.
The pineal gland hormone melatonin regulates several physiological processes including circadian rhythm and also alleviates oxidative stress‐induced degenerative diseases. In spite of its important biological roles, no high level ab initio conformational study has been conducted to reveal its structural features. In this work, the conformational flexibility of melatonin was investigated using correlated ab initio calculations. Conformers, obtained previously at the Hartree‐Fock level (HF/6‐31G*), were fully optimized using second order Møller‐Plesset perturbation theory applying the frozen core approximation (MP2(FC)/6‐31G*). Furthermore, single‐point MP4(SDQ,FC)/6‐31G*//MP2(FC)/6‐31G* computations were performed to investigate the effect of higher order perturbation terms. The HF and MP2 conformational spaces are considerably different: the initial 128 structures converged into 102 different local minima as confirmed by frequency calculations; 28 new minima appeared and 26 previous HF local minima disappeared; no “all‐trans” C3 side chain conformations are seen at the MP2(FC) level. The MP2 global minimum conformation is stabilized by an aromatic‐side chain interaction. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2008  相似文献   

17.
For the 102 atoms from He to Lr in their ground states, the Hartree–Fock interelectronic angle densities,¯A12), in momentum space are reported, where ¯12 is the angle between the momentum vectorsp1 and p2 of two electrons. In the first three atoms, He–Be, ¯A12) is found to be uniform independent of ¯12, while in the remaining 99 atoms,¯A12) is larger for a large ¯12 than for a small ¯12. Accordingly, the average interelectronic angles in momentum space are 90° precisely for the three atoms and greater than 90° for the 99 atoms.  相似文献   

18.
Average angles between linear momenta of an electron in a subshell nl and another electron in a subshell nl are examined for the 102 atoms He through Lr in their ground states, where n and l are the principal and azimuthal quantum numbers, respectively. Congruency in the mathematical structures of the average interelectronic angles in position and momentum spaces leads to the theoretical results that with even |ll| are exactly equal to 90°, while with odd |ll| are always larger than 90°. Numerical analyses of 3,275 subshell-pair angles with odd |ll| in the 102 atoms clarify that deviations of the total average interelectronic angles from 90° are mainly governed by subshell pairs with |nn|1 and |ll|=1, in contrast to the position-space results where only subshell pairs with n=n and |ll|=1 are important.Acknowledgments. We thank Mr. T. Shimazaki for his assistance in the compilation of data. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education of Japan.  相似文献   

19.
For the 53 neutral atoms from He to Xe in their ground states, the average distances < u> n l , n l in position space and < v> n l , n l in momentum space between an electron in a subshell nl and another electron in a subshell n l are studied, where n and l are the principal and azimuthal quantum numbers of an atomic subshell, respectively. Analysis of 1700 subshell pairs shows that the electron-pair distances < u> n l , n l in position space have an empirical but very accurate linear correlation with a one-electron quantity U n l , n l L r +S r 2/(3L r ), where L r and S r are the larger and smaller of subshell radii < r> n l and < r> n l , respectively. The correlation coefficients are never smaller than 0.999 for the 66 different combinations of two subshells appearing in the 53 atoms. The same is also true in momentum space, and the electron-pair momentum distances < > n l , n l have an accurate linear correlation with a one-electron momentum quantity V n l , n l L p +S p 2/(3L p ), where L p and S p are the larger and smaller of average subshell momenta < p> n l and < p> n l , respectively. Trends in the proportionality constants between < u> n l , n l and U n l , n l and between < > n l , n l and V n l , n l are discussed based on a hydrogenic model for the subshell radial functions. Received: 8 April 1998 / Accepted: 6 July 1998 / Published online: 18 September 1998  相似文献   

20.
Summary Symmetric orthogonalisation is favourable to perform in momentum space, as this article will show. We have used a model of a body centered cubic lattice with 1s- and 2s-Slater orbitals centered at each atom site. Computer programs have been written to calculate the eigenvalues of the overlap matrix which play an important role in constructing symmetrically orthogonalised wavefunctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号