首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyaniline-fullerene composites were prepared by the introduction of fullerene during polymerization of aniline. An investigation of the composites using FTIR and 13C NMR spectroscopy indicated interaction between fullerene and the imine groups of polyaniline. The formation of a polyaniline-fullerene complex with a structure corresponding to a doped polyaniline was proved by wide-angle x-ray scattering analysis. The conductivity of composites is more than four orders of magnitude higher than that of undoped polyaniline and that of fullerene. Improvement in the thermal stability of composites was evaluated using TGA.  相似文献   

2.
The mechanisms of formation of a metastable defect isomer of fullerene C60 due to the Stone-Wales transformation are theoretically studied. It is demonstrated that the paths of the “dynamic” Stone-Wales transformation at a high (sufficient for overcoming potential barriers) temperature can differ from the two “adiabatic” transformation paths discussed in the literature. This behavior is due to the presence of a great near-flat segment of the potential-energy surface in the neighborhood of metastable states. Moreover, the sequence of rupture and formation of interatomic bonds is other than that in the case of the adiabatic transformation.  相似文献   

3.
A new fully carbon nanocomposite material is synthesized by the immersion of carbon nanotubes in a fullerene solution in carbon disulfide. The presence of a dense layer of fullerene molecules on the outer nanotube surface is demonstrated by TEM and XPS. Fullerenes are redistributed on the nanotube surface during a long-term action of an electron beam, which points to the existence of a molecular bond between a nanotube and fullerenes. Theoretical calculations show that the formation of a fullerene shell begins with the attachment of one C60 molecule to a defect on the nanotube surface.  相似文献   

4.
C60 fullerene powder and fullerene soot are examined by the method of small-angle X-ray diffraction. Small-angle diffraction patterns constructed in the Guinier coordinates make it possible to find the radii of inertia of scattering elements. The small-angle diffraction scattering findings agree well with large-angle X-ray diffraction data.  相似文献   

5.
6.
The morphology of C60 precipitates synthesized by using isopropyl alcohol (IPA) added with water was investigated in order to know the effect of water on the growth of C60 nanowhiskers (C60NWs) in C60–toluene–IPA solution systems. The stability of C60NWs decreased and granular crystals of C60 were formed in the solutions when IPA added with an excess amount of water was used in the liquid–liquid interfacial precipitation method. The C60NWs were found to be destabilized with time in the solutions added with water. The C60NWs dried in air showed similar Raman profiles irrespective of the use of IPA with and without water addition. The Raman profiles of granular C60 single crystals showed the base lines much flatter than those of C60NWs, indicating that C60NWs possess a disordered crystal structure. By optimizing the growth condition, short C60NWs with aspect ratios ranging from 3 to 10 and an average length of about 1.8 μm were successfully fabricated. The short C60NWs are expected to be applicable for electrodes of organic thick film solar cells.  相似文献   

7.
Polymer-C60 fullerene composite coatings are studied using thermal desorption mass spectrometry. It is found that thermal desorption spectra of C60 fullerene molecules can exhibit several resolved peaks (at a specified heating rate) corresponding to thermal desorption states. The relative intensity of the thermal desorption peaks depends on the procedure used for preparing the composite coatings, in particular, on the time of sedimentation of the polymer-fullerene suspension. The occurrence of different stages in thermally stimulated desorption of C60 fullerene molecules is explained by the fact that the fullerene molecules can exist in several phase states characterized by different densities and degrees of ordering in the polymer matrix.  相似文献   

8.
The stability of (C20)N metastable chains, where C20 fullerenes are joined by tight covalent bonds, is analyzed by numerical simulation using a tight-binding potential. Various channels of losing the chain-cluster structure of the (C20)N complexes have been determined including the decay of the C20 clusters, their coalescence, and the separation of one C20 fullerene from a chain. The lifetimes of the (C20)N chains with N = 3–7 for T = 2000–3500 K are directly calculated by the molecular dynamics method. It has been shown that, although the stability of the chains decreases with an increase in N, it remains sufficiently high even for N ? 1. An interesting lateral result is the observation of new (C20)N isomers with the combination of various intercluster bonds with the maximum binding energy of fullerenes in the chain.  相似文献   

9.
Reactions of fullerene C60 with atomic fluorine are studied by the unrestricted broken spin symmetry Hartree-Fock (UBS HF) approach implemented in semiempirical codes based on the AMI technique. The calculations are focused on a successive addition of a fluorine atom to the fullerene cage following the indication of the highest chemical susceptibility of the cage atom, which is calculated at each step. The proposed computational synthesis is based on the effectively unpaired-electron concept of the chemical susceptibility of fullerene atoms. The obtained results are analyzed from the standpoints of energy, symmetry, and the composition abundance. A good fitting of the data to experimental findings proves a creative role of the suggested synthetic methodology.  相似文献   

10.
The donor-acceptor complexes of the C60 fullerene with cycle-containing polymers, namely, poly(2,6-dimethyl-1,4-phenylene oxide) (PPhO) and poly(N-vinylpyrrolidone) (PVP), are studied. A comparative analysis of the hydrodynamic and electrooptical properties of the initial polymers and their complexes with C60 in solutions demonstrates that the C60 fullerene has a restructuring effect on the polymer macromolecule, thus decreasing the degree of asymmetry of the macromolecular structure.  相似文献   

11.
Carbon-based nanoparticles (NPs) such as fullerenes and nanotubes have been extensively studied for drug delivery in recent years. The permeation process of fullerene and its derivative molecules through membrane is essential to the utilization of fullerene-based drug delivery system, but the mechanism and the dynamics of permeation through cell membrane are still unclear. In this study, coarse-grained molecular dynamics simulations were performed to investigate the permeation process of functionalized fullerene molecules (ca. 0.72 nm) through the membrane. Our results show that single functionalized fullerene molecule in such nanoscale could permeate the lipid membrane in micro-second time scale. Pristine C60 molecules prefer to aggregate into several small clusters while C60OH15 molecules could aggregate into one big cluster to permeate through the lipid membrane. After permeation of C60 or its derivatives into membrane, all C60 and C60OH15 molecules disaggregated and monodispersed in the lipid membrane.
Graphical abstract ?
  相似文献   

12.
This paper reports on the results of complex investigations into the structural, thermodynamic, and dilatometric properties of the C60 dimerized phase prepared under compression of a C60 fullerite at a pressure up to 8 GPa and a temperature of 290 K. It is demonstrated that the dimerized phase has a face-centered cubic structure with a lattice parameter a=14.02±0.05 Å. The dimeric structure of the studied sample is confirmed by x-ray diffraction analysis. According to the dilatometric data, the volume jump observed in the vicinity of the orientational transition for the dimerized phase is estimated to be approximately 30 times less than that for the C60 fullerite. The temperature dependence of the heat capacity of the (C60)2 crystalline dimer is examined using precision adiabatic vacuum calorimetry under normal pressure in the temperature range from T → 0 K to 340 K. The results obtained are used in the calculations of thermodynamic functions, namely, the heat capacity C p 0 (T), the enthalpy H0(T)-H0(0), the entropy S0(T), and the Gibbs function G0(T)-H0(0). The fractal dimension D is determined as a function of the heat capacity. The standard entropy of the formation of the (C60)2 crystalline dimer from a simple compound (graphite) at T=298.15 K and normal pressure is calculated.  相似文献   

13.
The structure of the fullerence fluoride C60F24 of the T h symmetry contains two types of chemically different carbon atoms, namely, atoms of isolated double bonds and atoms of CF groups. X-ray photoelectron and x-ray emission spectroscopic studies of C60F24 revealed a difference in the widths of the x-ray bands corresponding to these types of atoms. Nonempirical quantum-chemical calculations performed for C59NF 24 + ions with a hole in the C 1s core level of the fullerence fluoride showed that the difference in the bandwidths may be due to the fact that the vibrational states of the system are different when 1s electrons are removed from chemically nonequivalent atoms.  相似文献   

14.
The structure transformation occurring in fullerene film under bombardment by 50 keV C60+ cluster ions is reported. The Raman spectra of the irradiated C60 films reveal a new peak rising at 1458 cm−1 with an increase in the ion fluence. This feature of the Raman spectra suggests linear polymerization of solid C60 induced by the cluster ion impacts. The aligned C60 polymeric chains composing about 5–10 fullerene molecules have been distinguished on the film surface after the high-fluence irradiation using atomic force microscopy (AFM). The surface profiling analysis of the irradiated films has revealed pronounced sputtering during the treatment. The obtained results indicate that the C60 polymerization occurs in a deep layer situated more than 40 nm below the film surface. The deep location of the C60 polymeric phase indirectly confirms the dominant role of shock waves in the detected C60 phase transformation.  相似文献   

15.
The effect of small C60 fullerene additions on the mechanical properties (upon uniaxial tension) and structure of a polybutadiene-styrene raw rubber is studied.  相似文献   

16.
17.
The effect of a bismuth sublayer with an effective thickness of 0.5 to 4 nm on the structure of C60 fullerene films grown on amorphous substrates (silicon covered with a natural oxide layer; glass) using the quasi-closed-volume method is studied. An x-ray diffraction study of fullerene films showed that the intensity ratio between the (220) and (111) peaks depends nonmonotonically on the sublayer thickness. In the bismuth sublayer thickness range 0.5–2.0 nm, fullerene films are found to exhibit a growth texture with the 〈110〉 axis; the average crystallite size was ~20 µm. The quality of the texture can be improved by varying the fullerene growth temperature.  相似文献   

18.
The photoionization of the C60 and C240 fullerenes by ultrashort electromagnetic pulses of subfemtosecond duration is studied. The probability for the process to occur during the action of the pulse as a function of the pulse duration is calculated for different carrier frequencies. The spectrum of photoelectrons emitted during the ionization of the fullerenes by a pulse with a corrected Gaussian shape is calculated.  相似文献   

19.
The stability of C60 and C70 fullerenes and C60 and C72 nanotubes devoid of 2–12 atoms of the cluster skeleton was theoretically studied. It was established that Cn molecules with an even number of atoms remain stable, which was confirmed by experimental studies of monomolecular decay of clusters with the number of atoms n≥30. The change in the internuclear distances and in the ionization potential of nanoclusters was determined depending on the number of eliminated atoms. Such defects were shown to decrease the ionization potential of nanoclusters by 0.5–0.8 eV. The electron spectrum was calculated within the Harrison semiempirical tight-binding model in the Goodwin modification. A new parametrization of interatomic matrix elements of the Hamiltonian and atomic terms for carbon nanoclusters was suggested.  相似文献   

20.
The results of computer simulation of the dynamics of fullerene C20 at different temperatures are presented. It is shown that, although it is metastable, this isomer is very stable with respect to the transition to a lower energy configuration and retains its chemical structure under heating to very high temperatures, T ≈ 3000 K. Its decay activation energy is found to be E a ≈ 7 eV. Possible decay channels are studied, and the height of the minimum potential barrier to decay is determined to be U = 5.0 eV. The results obtained make it possible to understand the reasons for the anomalous stability of fullerene C20 under normal conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号