首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phase analytical investigations in the system magnesium-iridium-indium revealed the magnesium-rich intermetallics Ir3.30(1)Mg17.96(4)In0.74(4) and Ir3Mg17.1(1)In1.9(1). The samples were prepared from the elements via induction melting in glassy carbon crucibles in a water-cooled sample chamber and subsequent annealing. Both intermetallics were investigated by X-ray powder and single-crystal diffraction: C2/c, Z=4, a=979.1(1), b=2197.4(2), , β=105.79(1)°, wR2=0.0434, 3076 F2 values, 108 variables for Ir3.30(1)Mg17.96(4)In0.74(4), and a=983.39(8), b=2211.4(2), , β=105.757(6)°, wR2=0.0487, 3893 F2 values, and 115 variables for Ir3Mg17.1(1)In1.9(1). Both compounds show solid solutions. In Ir3.30(1)Mg17.96(4)In0.74(4), the indium site shows an occupancy by 69.9(4)% In+30.1(4)% Ir, and one magnesium site has a small mixed occupancy with indium, while nine atomic sites in Ir3Mg17.1(1)In1.9(1) show Mg/In mixing with indium occupancies between 1.2(3)% and 14.8(3)%. The relatively complex crystal structure is of a new type. It can be explained by a packing of coordination number 10 and 12 polyhedra around the iridium atoms. The crystal chemical peculiarities and chemical bonding in both intermetallics is briefly discussed.  相似文献   

2.
Well crystallized samples of Dy2Pt7In16 and Tb6Pt12In23 were synthesized by an indium flux technique. Arc-melted precursor alloys with the starting compositions ∼DyPt3In6 and ∼TbPtIn4 were annealed with a slight excess of indium at 1200 K followed by slow cooling (5 K/h) to 870 K. Both indides were investigated by X-ray diffraction on powders and single crystals: Cmmm, a=1211.1(2), b=1997.8(3), c=439.50(6) pm, wR2=0.0518, 1138 F2 values, 45 variable parameters for Dy2Pt7In16 and C2/ma=2834.6(4), b=440.05(7), c=1477.1(3) pm, β=112.37(1)°, wR2=0.0753, 2543 F2 values, 126 variable parameters for Tb6Pt12In23. The platinum atoms in the terbium compound have a distorted trigonal prismatic coordination. In Dy2Pt7In16, trigonal and square prismatic coordination occur. The shortest interatomic distances are observed for Pt-In followed by In-In contacts. Considering these strong interactions, both structures can be described by complex three-dimensional [Pt7In16] and [Pt12In23] networks. The networks leave distorted pentagonal channels in Dy2Pt7In16, while pentagonal and hexagonal channels occur in Tb6Pt12In23. The crystal chemistry and chemical bonding of the two indides are briefly discussed.  相似文献   

3.
The first indium platinum metal borides have been synthesized and structurally characterized by single crystal X-ray diffraction data. In3Ir3B and In3Rh3B are isotypic. They crystallize with the hexagonal space group and Z=1. The lattice constants are , for In3Ir3B and , for In3Rh3B. The structure which is derived from the Fe2P type is characterized by columns of boron centered triangular platinum metal prisms inserted in a three-dimensional indium matrix. The indium atoms are on split positions. In5Ir9B4 (hexagonal, space group , , , Z=1) crystallizes with a structure derived from the CeCo3B2 type. The structure can be interpreted as a layer as well as a channel structure. In part the indium atoms are arranged at the vertices of a honeycomb net (Schlaefli symbol 63) separating slabs consisting of double layers of triangular Ir6B prisms, and in part they form a linear chain in a hexagonal channel formed by iridium prisms and indium atoms of the honeycomb lattice.  相似文献   

4.
We report the synthesis and crystal structure of the new compound Sr4PbPt4O11, containing platinum in highly unusual square pyramidal coordination. The crystals were obtained in molten lead oxide. The structure was solved by X-ray single crystal diffraction techniques on a twinned sample, the final R factors are R=0.0260 and wR=0.0262. The symmetry is triclinic, space group P1¯, with , , , α=90.421(3)°, β=89.773(8)°, γ=90.140(9)° and Z=2. The structure is built from dumbell-shaped Pt2O9 entities formed by a dinuclear metal-metal bonded Pt26+ ion with asymmetric environments of the two Pt atoms, classical PtO4 square plane and unusual PtO5 square pyramid. Successive Pt2O9 entities deduced from 90° rotations are connected through the oxygens of the PtO4 basal squares to form [Pt4O108−] columns further connected through Pb2+ and Sr2+ ions. Raman spectroscopy confirmed the peculiar platinum coordination environment.  相似文献   

5.
A novel 3-D compound of (enH2)1.5[Bi3(C2O4)6(CO2CONHCH2CH2NH3)]·6.5H2O has been hydrothermally synthesized and characterized by IR, ultraviolet-visible diffuse reflection integral spectrum (UV-Vis DRIS), fluorescence spectra, TGA and single crystal X-ray diffraction. It crystallizes in the monoclinic system, space group C2/c with , , , β=112.419(3)°, , Z=8, R1=0.0463 and wR2=0.1393 for unique 7686 reflections I>2σ(I). In the title compound, the Bi atoms have eight-fold and nine-fold coordination with respect to the oxygen atoms, with the Bi atoms in distorted dodecahedron and monocapped square antiprism, respectively. The 3-D framework of the title compound contains channels and is composed of linkages between Bi atoms and oxalate units, forming honeycomb-like layers with two kinds of 6+6 membered aperture, and pillared by oxalate ligands and monamide groups. The channels have N-ethylamine oxalate monamide group CO2CONHCH2CH2NH3+, which is formed by the in situ reaction of en and oxalate acid. At room temperature, the complex exhibits intense blue luminescence with an emission peak at 445 nm.  相似文献   

6.
The title compounds were prepared from the elements in the stoichiometric ratio at 800 °C under exclusion of air. Tl6Si2Te6 crystallizes in the space group P1¯, isostructural with Tl6Ge2Te6, with , , , α=89.158(2)°, β=96.544(2)°, γ=100.685(2)°, (Z=2). Its structure is composed of dimeric [Si2Te6]6− units with a Si-Si single bond, while the Tl atoms are irregularly coordinated by five to six Te atoms. Numerous weakly bonding Tl-Tl contacts exist. Both title compounds are black semiconductors with small band gaps, calculated to be 0.9 eV for Tl6Si2Te6 and 0.5 eV for Tl6Ge2Te6. The Seebeck coefficients are +65 μV K−1 in case of Tl6Si2Te6 and +150 μV K−1 in case of Tl6Ge2Te6 at 300 K, and the electrical conductivities are 5.5 and 3 Ω−1 cm−1, respectively.  相似文献   

7.
Two new (NaSrP, Li4SrP2) and two known (LiSrP, LiBaP) ternary phosphides have been synthesized and characterized using single crystal X-ray diffraction studies. NaSrP crystallizes in the non-centrosymmetric hexagonal space group (#189, a=7.6357(3) Å, c=4.4698(3) Å, V=225.69(2) Å3, Z=3, and R/wR=0.0173/0.0268). NaSrP adopts an ordered Fe2P structure type. PSr6 trigonal prisms share trigonal (pinacoid) faces to form 1D chains. Those chains define large channels along the [001] direction through edge-sharing. The channels are filled by chains of PNa6 face-sharing trigonal prisms. Li4SrP2 crystallizes in the rhombohedral space group (#166, a=4.2813(2) Å, c=23.437(2) Å, V=372.04(4) Å3, Z=3, and R/wR=0.0142/0.0222). In contrast to previous reports, LiSrP and LiBaP crystallize in the centrosymmetric hexagonal space group P63/mmc (#194, a=4.3674(3) Å, c=7.9802(11) Å, V=131.82(2) Å3, Z=2, and R/wR=0.0099/0.0217 for LiSrP; a=4.5003(2) Å, c=8.6049(7) Å, V=150.92(2) Å3, Z=2, and R/wR=0.0098/0.0210 for LiBaP). Li4SrP2, LiSrP, and LiBaP can be described as Li3P derivatives. Li atoms and P atoms make a graphite-like hexagonal layer, . In LiSrP and LiBaP, Sr or Ba atoms reside between layers to substitute for two Li atoms of Li3P, while in Li4SrP2, Sr substitutes only between every other layer.  相似文献   

8.
The crystal structures of three new intermetallic ternary compounds in the LnNiSb3 (Ln=Pr, Nd and Sm) family have been characterized by single crystal X-ray diffraction. PrNiSb3, NdNiSb3 and SmNiSb3 all crystallize in an orthorhombic space group, Pbcm (No. 57), Z=12, with , , , and ; , , , and ; and , , , and , for Ln=Pr, Nd and Sm, respectively. These compounds consist of rare-earth atoms located above and below layers of nearly square, buckled Sb nets, along with layers of highly distorted edge- and face-sharing NiSb6 octahedra. Resistivity data indicate metallic behavior for all three compounds. Magnetization measurements show antiferromagnetic behavior with (PrNiSb3), 4.6 K (NdNiSb3), and 2.9 K (SmNiSb3). Effective moments of 3.62 μB, 3.90 μB and 0.80 μB are found for PrNiSb3, NdNiSb3 and SmNiSb3, respectively, and are consistent with Pr3+ (f 2), Nd3+ (f 3), and Sm3+ (f 4).  相似文献   

9.
The crystal structures of the title compounds were solved using the single-crystal X-ray diffraction technique. At room temperature CsKSO4Te(OH)6 was found to crystallize in the monoclinic system with Pn space group and lattice parameters: ; ; ; β=106.53(2)°; ; Z=4 and . The structural refinement has led to a reliability factor of R1=0.0284 (wR2=0.064) for 7577 independent reflections. Rb1.25K0.75SO4Te(OH)6 material possesses a monoclinic structure with space group P21/a and cell parameters: ; ; ; β=106.860(10)°; ; Z=4 and . The residuals are R1=0.0297 and wR2=0.0776 for 3336 independent reflections. The main interest of these structures is the presence of two different and independent anionic groups (TeO66− and SO42−) in the same crystal.Complex impedance measurements (Z*=ZiZ) have been undertaken in the frequency and temperature ranges 20-106 Hz and 400-600 K, respectively. The dielectric relaxation is studied in the complex modulus formalism M*.  相似文献   

10.
Tetrahydroborate enclathrated sodalites with gallosilicate and aluminogermanate host framework were synthesized under mild hydrothermal conditions and characterized by X-ray powder diffraction and IR spectroscopy. Crystal structures were refined in the space group P-43n from X-ray powder data using the Rietveld method. Na8[GaSiO4]6(BH4)2: a=895.90(1) pm, V=0.71909(3)×10−6 nm3, RP=0.074, RB=0.022, Na8[AlGeO4]6(BH4)2: a=905.89(2) pm, V=0.74340(6)×10−6 nm3, RP=0.082, RB=0.026. The tetrahedral framework T-atoms are completely ordered in each case and the boron atoms are located at the centre of the sodalite cages. The hydrogen atoms of the enclathrated anions were refined on x, x, x positions, restraining them to boron-hydrogen distances of 116.8 pm as found in NaBD4.The IR-absorption spectra of the novel phases show the typical bands of the tetrahedral group as found in the spectrum of pure sodium boron hydride.The new sodalites are discussed as interesting -containing model compounds which could release pure hydrogen.  相似文献   

11.
Three manganese oxalates have been hydrothermally synthesized, and their structures determined by single-crystal X-ray diffraction. MnC2O4·2H2O (I) is orthorhombic, P212121, , , , , Z=4, final R, Rw=0.0832, 0.1017 for 561 observed data (I>3σ(I)). The one-dimensional structure consists of chains of oxalate-bridged manganese centers. [C4H8(NH2)2][Mn2(C2O4)3] (II) is triclinic, , , , , α=81.489(2)°, β=81.045(2)°, γ=86.076(2)°, , Z=1, final R, Rw=0.0467, 0.0596 for 1773 observed data (I > 3σ (I)). The three-dimensional framework is constructed from seven coordinate manganese and oxalate anions. The material contains extra-framework diprotonated piperazine cations. Mn2(C2O4)(OH)2 (III) is monoclinic, P21/c, , , , β=91.10(3)°, , Z=1, final R1, wR2=0.0710, 0.1378 for 268 observed data (I>2σ (I)). The structure is also three dimensional, with layers of MnO6 octahedra pillared by oxalate anions. The hydroxide group is found bonded to three manganese centers resulting in a four coordinate oxygen.  相似文献   

12.
Three new hydrated scandium selenites have been hydrothermally synthesized as single crystals and structurally and physically characterized. Sc2(SeO3)3·H2O crystallizes as a new structure type containing novel ScO7 pentagonal bipyramidal and ScO6+1 capped octahedral coordination polyhedra. Sc2(SeO3)3·3H2O contains typical ScO6 octahedra and is isostructural with its M2(SeO3)3·3H2O (M=Al, Cr, Fe, Ga) congeners. CsSc3(SeO3)4(HSeO3)2·2H2O contains near-regular ScO6 octahedra and has essentially the same structure as its indium-containing analogue. All three phases contain the expected pyramidal [SeO3]2- selenite groups. Crystal data: Sc2(SeO3)3·3H2O, Mr=524.85, trigonal, R3c (No. 161), , , , Z=6, R(F)=0.018, wR(F2)=0.036; Sc2(SeO3)3·H2O, Mr=488.82, orthorhombic, P212121 (No. 19), , , , , Z=4, R(F)=0.051, wR(F2)=0.086; CsSc3(SeO3)4(HSeO3)2·2H2O, Mr=1067.60, orthorhombic, Pnma (No. 62), , , , , Z=4, R(F)=0.035, wR(F2)=0.070.  相似文献   

13.
The two compounds RbInS2 and RbInSe2 have been synthesized at 773 K by means of the reactive flux method. These isostructural compounds crystallize in space group C2/c of the monoclinic system with 16 formula units in a cell at 153 K of dimensions , , , and β=100.244(1)° for RbInS2, and , , , and β=100.16(2)° for RbInSe2. The In atoms are four-coordinated. The structure consists of two-dimensional (Q=S, Se) layers perpendicular to [001] separated from the Rb+ cations. Adamantane-like In4Q10 units are connected by common corners to form the layers. Band structure calculations indicate that these compounds are direct band-gap semiconductors with the smallest band gap at the Γ point. The calculated band gaps are 2.8 eV for RbInS2 and 2.0 eV for RbInSe2, values that are consistent with the colors of the compounds.  相似文献   

14.
An alkali-metal indium phosphate crystal, K3In3P4O16, has been synthesized by a high-temperature solution reaction and exhibits a new structure in the family of the alkali-metal indium phosphates system. Single-crystal X-ray diffraction analysis shows the structure to be monoclinic with space group P21/n, and the following cell parameters: a=9.7003(18), b=9.8065(18), c=15.855(3) Å, β=90.346(3)°, V=1508.2(5) Å3, Z=4, R=0.0254. It possesses three-dimensional anionic frameworks with tunnels occupied by K+ cations running along the a-axis. The emission and absorption spectra of the compound have been investigated. Additionally, the calculations of energy band structure, density of states, dielectric constants and refractive indexes have been performed with the density functional theory method. Also, the two-photon absorption spectrum is simulated by two-band model. The obtained results tend to support the experimental data.  相似文献   

15.
16.
The synthesis, single crystal structure determination, and Raman spectrum are reported for colorless transparent tribarium disodium tetracyanamide, Ba3Na2(CN2)4. The title compound crystallizes in the space group C2h5-P21/c (#14, , , , β=110.454(4)°, , Z=4, R/wR=0.0266/0.0543). Each sodium atom is surrounded by six nitrogen atoms in octahedral geometry. Sodium centered nitrogen octahedra are linked through face-sharing along the [100] direction to form one-dimensional (1D) chains. These chains are connected to each other through the carbon atoms of cyanamide and make a three-dimensional (3D) network with 1D channels along the [100] direction. Barium atoms and additional cyanamide anions reside in the channels. Each barium atom is irregularly coordinated with nitrogen and carbon from the cyanamide anions. The Raman spectrum shows symmetric vibrations of [NCN]2− corresponding to νsym (1241.5 cm−1) and 2δ (1356.4 cm−1).  相似文献   

17.
This paper reports about two new hydrogen-containing rare-earth oxoborates RE4B6O14(OH)2 (RE=Dy, Ho) synthesized under high-pressure/high-temperature conditions from the corresponding rare-earth oxides, boron oxide, and water using a Walker-type multianvil equipment at 8 GPa and 880 °C. The single crystal structure determination of Dy4B6O14(OH)2 showed: Pbcn, a=1292.7(2), b=437.1(2), , Z=2, R1=0.0190, and wR2=0.0349 (all data). The isotypic holmium species revealed: Pbcn, a=1292.8(2), b=436.2(2), , Z=2, R1=0.0206, and wR2=0.0406 (all data). The compounds exhibit a new type of structure, which is built up from layers of condensed BO4-tetrahedra. Between the layers, the rare-earth cations are coordinated by 7+2 oxygen atoms. Furthermore, we report about temperature-resolved in situ powder diffraction measurements, DTA/TG, and IR-spectroscopic investigations into RE4B6O14(OH)2 (RE=Dy, Ho).  相似文献   

18.
A novel three-dimensional compound of Na4Sb12Mo5O35 has been synthesized by hydrothermal methods and structurally characterized by X-ray crystallography. It crystallizes in the triclinic system space group with , , , α=94.59(3)°, β=112.68(3)°, γ=92.97(3)°, , Z=2, R1=0.0275, wR2=0.0984 for 7364 unique reflections with I>2σ(I). The molecular structure is built up of Mo6O21, MoO4 units, and cage-like units that contain 12 Sb atoms. IR, UV-Vis DRIS (Ultraviolet-Visible Diffuse Reflection Integral Spectrum), fluorescent spectra, and the thermogravimetric analysis of this compound were investigated.  相似文献   

19.
A novel organically templated vanadium tellurite (NH3CH2CH2NH3)2V2Te6O18 (1) has been hydrothermally synthesized and characterized by elemental analyses, IR, thermal stability analysis, magnetic susceptibilities and single crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system, space group P21/n, , , , β=94.789(4)°, , Z=2, R1[I>2σ(I)]=0.0187, wR2[I>2σ(I)]=0.0482. Compound 1 exhibits a novel three-dimensional (3D) vanadium tellurite anion framework composed of vanadium, tellurium, and oxygen atoms through covalent bonds, with the [NH3CH2CH2NH3]2+ cations residing in the channels.  相似文献   

20.
The hydrothermal synthesis and single crystal structure of Zn3(HPO3)4·Zn(H2O)6 are reported. The structure is built-up from vertex linking ZnO4 tetrahedral and HPO3 pseudo-pyramids units, giving rise to a three-dimensional framework with large 8, 16-membered ring channels. The zincophosphite is purly inorganic with the octahedral zinc complex filled in the channel. The synthesis of system required the presence of the organic amine which is not incorporated into the structure of the product. The framework-metal complex encapsulating in the channel is the first time appeared in open-framework zincophospates and zincophosphites. Crystal data: Zn3(HPO3)4·Zn(H2O)6, M=689.52, orthorhombic, Fddd (No. 70), , , , , Z=8, , , R=0.0265, Rw=0.0406.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号