首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although various transition metal oxides have been reported to act as low potential Li insertion hosts, the oxyhydroxides have remained unexplored to date. We show here that the hydroxide ions present in transition metal oxyhydroxides do not interfere with the lithium uptake and extraction, permitting very good reversibility of the reduction/oxidation reactions. Goethite (α-FeOOH) nanocrystals can uptake and extract large amount of Li via the conversion reaction mechanism, providing a reversible capacity of 500 mA h g−1 at an average potential of 0.85 V vs. Li/Li+. The mechanism was examined using a combination of X-ray diffraction, electron microscopy, and the corresponding selected area electron diffractions (SAEDs). The α-FeOOH is reduced into nanoparticles of metallic Fe0 embedded in an amorphous matrix of Li2O and LiOH in the first discharge; the subsequent cyclings are redox reactions between metallic Fe0 and Fe2O3 clusters.  相似文献   

2.
An in situ chemical synthesis approach has been developed to prepare SnO2–graphene nanocomposite. Field emission scanning electron microscopy and transmission electron microscopy observation revealed the homogeneous distribution of SnO2 nanoparticles (4–6 nm in size) on graphene matrix. The electrochemical reactivities of the SnO2–graphene nanocomposite as anode material were measured by cyclic voltammetry and galvanostatic charge/discharge cycling. The as-synthesized SnO2–graphene nanocomposite exhibited a reversible lithium storage capacity of 765 mAh/g in the first cycle and an enhanced cyclability, which can be ascribed to 3D architecture of the SnO2–graphene nanocomposite.  相似文献   

3.
Rational designing and controlling of nanostructures is a key factor in realizing appropriate properties required for the high-performance energy fields. In the present study, hollow SnO2@C nanoparticles (NPs) with a mean size of 50 nm have been synthesized in large-scale via a facile hydrothermal approach. The morphology and composition of as-obtained products were studied by various characterized techniques. As an anode material for lithium ion batteries (LIBs), the as-prepared hollow SnO2@C NPs exhibit significant improvement in cycle performances. The discharge capacity of lithium battery is as high as 370 mAh g-1, and the current density is 3910 mA g-1(5 C) after 573 cycles. Furthermore, the capacity recovers up to 1100 mAh g-1 at the rate performances in which the current density is recovered to 156.4 mA g-1(0.2 C). Undoubtedly, sub-100 nm SnO2@C NPs provide significant improvement to the electrochemical performance of LIBs as superior-anode nanomaterials, and this carbon coating strategy can pave the way for developing high-performance LIBs.  相似文献   

4.
Tin(II) oxalate was studied as a novel precursor for active electrode materials in lithium-ion batteries. The discharge of lithium cells using tin oxalate electrodes takes place by three irreversible steps: tin reduction, forming a lithium oxalate matrix; solvent decomposition to form a passivating layer; and oxalate reduction in a two-electron process. These are followed by reversible alloying of tin with lithium, leading to a maximum discharge of 11 F/mol. Cycling of the cells showed reversible capacities higher than 600 mAh/g during the first five cycles and ca. 200 mAh/g after 50 cycles. Tin oxalate was converted to tin dioxide by thermal decomposition at 450 °C and also by a chemical method by dissolving tin oxalate powder in 33% v/v hydrogen peroxide at room temperature. The ultrafine nature of the tin dioxide powders obtained by this procedure allow their use as electrodes in lithium cells. The best capacity retention during the first five cycles was achieved for a sample heat treated to 250 °C to eliminate surface water. Electronic Publication  相似文献   

5.
A novel anode material for lithium-ion batteries, tin nanoparticles coated with carbon embedded in graphene (Sn@C/graphene), was fabricated by hydrothermal synthesis and subsequent annealing. The structure and morphology of the nanocomposite were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The size of the Sn@C nanoparticles is about 50-200 nm. The reversible specific capacity of the nanocomposite is ∼662 mAh g−1 at a specific current of 100 mA g−1 after 100 cycles, even ∼417 mAh g−1 at the high current of 1000 mA g−1. These results indicate that Sn@C/graphene possesses superior cycle performance and high rate capability. The enhanced electrochemical performances can be ascribed to the characteristic structure of the nanocomposite with both of the graphene and carbon shells, which buffer the volume change of the metallic tin and prevent the detachment and agglomeration of pulverized tin.  相似文献   

6.
Calcium stannate (CaSnO3) and malayaite (CaSnSiO5) were synthesized by means of a high temperature solid-state reaction. Their crystal structures and morphologies were characterized by X-ray diffraction (XRD) and Scanning Electron Microscopy; their electrochemical properties were analyzed by galvanostatic tests. The amorphization of the initial electrode materials was followed by XRD. The first discharge of the oxides CaSnO3 and CaSnSiO5 shows a plateau at low potential, which is due to the progressive formation of Li–Ca–Sn and/or Li–Sn alloys as shown by 119Sn Mössbauer spectroscopy. The results reveal similar electrochemical mechanisms for CaSnO3 and CaSnSiO5 but they completely differ from those related to SnO2.  相似文献   

7.
F-doped TiO2 (FTO) powders were synthesized by spray pyrolysis (SP) from an aqueous solution of H2TiF6. The resulting FTO powders possessed spherical particles with a rough surface morphology and a strong surface acidity. The fluorine concentrations in the FTO powders calculated from XPS spectra significantly depended on SP temperature and ranged from 2.76 to 9.40 at.%. The FTO powder prepared at SP temperature of 1173 K demonstrated the highest photocatalytic activity for the decomposition of gas-phase acetaldehyde under both ultraviolet (UV) and visible light (vis) irradiations, and it was higher than that of commercial P 25. This high photocatalytic activity was ascribed to several beneficial effects produced by F-doping: enhancement of surface acidity, creation of oxygen vacancies, and increase of active sites. It was interesting to point out that the vis photocatalytic activity of FTO powders was achieved by the creation of surface oxygen vacancies rather than the improvement of optical absorption property of bulk TiO2 in vis region.  相似文献   

8.
CaSnO3 with the distorted-perovskite structure was prepared by sol–gel and high temperature solid-state reaction and electrochemical properties were studied in cell with Li as counter electrode. The sol–gel method gave uniform nano-crystallites (200–300 nm) of CaSnO3 and was shown to deliver a reversible capacity of 380 mAh/g (0.005–1.0 V; 60 mA/g) with good cycling stability up to 45 cycles. The observed capacity involved in the first-discharge and the reversible capacity values during subsequent charge–discharge cycles show that the electrochemical process in CaSnO3 is similar to other Sn-containing mixed oxide systems, viz., an initial structural reduction with Sn-metal formation followed by reversible Li–Sn alloy formation. The performance with respect to the attainable capacity, its retention on charge–discharge cycling and rate capability is better than the previously reported best-performing bulk Sn-oxide or ATCO starting materials which reveals that the perovskite structure and Ca-ion play a beneficial role.  相似文献   

9.
A novel anode material, LiNb3O8, whose theoretical capacity is 389 mAh/g assuming two-electron transfers (Nb5+ → Nb3+), was prepared by a solid state reaction. It was found that only 3.8 Li per unit formula can be inserted into the as-prepared micro-sized sample. However, when the sample was ball-milled with acetylene black to form a mixed conducting network, 5.4 Li can be inserted in the same voltage range and 2.8 Li (180 mAh/g) can be reversibly extracted after 50 cycles.  相似文献   

10.
Carbon fibre supported titanium niobium oxide (TiNb2O7) composite electrodes are prepared via a simple solvothermal method and show superior high-rate performance with large capacity and good cycling performance.  相似文献   

11.
Mesophase pitch (MP)/exfoliated graphite nanoplatelets (GNPs) nanocomposite has been prepared by an efficient method with an initiation of graphite intercalation compounds (GIC). X-ray diffraction, optical microscopy, high-resolution transmission electron microscopy and scanning electron microscopy analysis techniques are used to characterize the samples. It is observed that GIC has exfoliated completely into GNPs during the formation of MP/GNPs nanocomposite and the GNPs are distributed uniformly in MP matrix, which represent a conductive path for a movement of electrons throughout the composites. Electrochemical tests demonstrate that the carbonized MP/GNPs nanocomposite displays higher capacity and better cycle performance in comparison with the pure carbonized MP. It is concluded that such a large improvement of electrochemical performance within the nanocomposite may in general be related to the enhanced electronic conductivity, which is achieved by good dispersion of GNPs within MP matrix and formation of a 3D network of GNPs.  相似文献   

12.
The influence of the lithium content in the starting composition, depth of discharge, binder and electrolyte on the cycle stability was investigated. The structural changes in Lix(Al0.8Zn0.2) electrodes during electrochemical lithium extraction and reinsertion were studied by in situ synchrotron diffraction. The crystal structure of the new compound Li4Al3.42Zn11.58 was determined by single-crystal X-ray diffraction and can be described as combination of the CaCu5 and MgFe6Ge6 structure types. The phase equilibria at 150 °C in the Li–Al–Zn system were investigated on six alloys, prepared along the lithium extraction–insertion line.  相似文献   

13.
将无机盐NH4F加入到MnO2的前驱体溶液中,通过高效、简单的一步水热法制备了具有氧缺陷的F掺杂α-MnO2纳米棒(记为F-MnO2)。氧空位和F掺杂对提高F-MnO2的导电性、促进离子扩散、提高倍率性能起着至关重要的作用。另外,由于F掺杂,形成了F—Mn键,这可以有效地抑制放电产物中Mn3+的Jahn-Teller畸变,从而提高结构的稳定性。得益于这些协同效应,组装的Zn||F-MnO2全电池在0.5 A·g-1下,首圈放电比容量高达274 mAh·g-1,且具有较长的循环寿命和优异的倍率性能。同时,通过循环伏安(CV)和恒流充放电(GCD)曲线证明了F-MnO2的储能机制为H+和Zn2+的共嵌入/脱出过程。  相似文献   

14.
《中国化学快报》2020,31(9):2325-2329
As electrodes, two-dimensional materials show special advantages including the infinite planar lengths, broad electrochemical window, large surface–volume ratio, and much exposed active sites. In theory, the two-dimensional materials consist of the elements with high electronegativity may absorb more Na atoms, resulting in a high battery storage capacity. Based on the above idea, we selected the two dimensional metallic PS2 with 1T-Type structure as an anode material, and explored its potential applications as an electrode material for Na-ion battery through first-principle calculations. As we expected, when two dimensional PS2 is used as an anode in Na-ion battery, it can adsorb maximum three layers of sodium atoms on both sides of the monolayer, resulting in a maximum theoretical capacity of 1692 mAh/g. Furthermore, it also possesses a rather small sodium diffusion barrier of 0.17 eV, a low average open-circuit voltage of 0.18 V, and a relatively small lattice changes within 13% during the intercalation of Na. These results suggested that the two dimensional PS2 is a potentially excellent Na-ion battery anode. Our idea of designing two-dimensional anode materials with high storage capacity may provide some references for designing the next generation anode materials of metal-ion batteries.  相似文献   

15.
Au/SnO2 core-shell structure nanoparticles were synthesized using the microwave hydrothermal method. The optical and morphological properties of these particles were examined and compared with those obtained by the conventional hydrothermal method. In microwave preparation, the peak position of the UV-visible plasmon absorption band of Au nanoparticles was red-shifted from 520 to 543 nm, due to the formation of an SnO2 shell. An SnO2 shell formation was complete within 5 min. The thickness of the SnO2 shell was 10-12 nm, and the primary particle size of SnO2 crystallites was 3-5 nm. For the core-shell particles prepared by a conventional hydrothermal method, the shell formed over the entire synthesis period and was not as crystalline as those produced, using the microwave method. The relationship between the morphological and spectroscopic properties and the crystallinity of the SnO2 shell are discussed.  相似文献   

16.
A facile and straightforward method was adopted to synthesize ZnCo2O4/graphene nanocomposite anode. In the first step, pure ZnCo2O4 nanoparticles were synthesized using urea-assisted auto-combustion synthesis followed by annealing at a low temperature of 400 °C. In the second step, in order to synthesize ZnCo2O4/graphene nanocomposite, the obtained pure ZnCo2O4 nanoparticles were milled with 10 wt% reduced graphene nanosheets using high energy spex mill for 30 s. The ZnCo2O4 nanoparticles, with particle sizes of 25–50 nm, were uniformly dispersed and anchored on the reduced graphene nanosheets. Compared with pure ZnCo2O4 nanoparticles anode, significant improvements in the electrochemical performance of the nanocomposite anode were obtained. The resulting nanocomposite delivered a reversible capacity of 1124.8 mAh g−1 at 0.1 C after 90 cycles with 98% Coulombic efficiency and high rate capability of 515.9 mAh g−1 at 4.5 C, thus exhibiting one of the best lithium storage properties among the reported ZnCo2O4 anodes. The significant enhancement of the electrochemical performance of the nanocomposite anode could be credited to the strong synergy between ZnCo2O4 and graphene nanosheets, which maintain excellent electronic contact and accommodate the large volume changes during the lithiation/delithiation process.  相似文献   

17.
A three-dimensional few-layer reduced graphene oxide-wrapped mesoporous Li4Ti5O12 (m-LTO@FLRGO) electrode is produced using a simple solution fabrication process. When tested as an anode for Liion batteries, the m-LTO@FL-RGO composite exhibits excellent rate capability and superior cycle life. The capacity of m-LTO@FL-RGO reaches 165.4 mA h g-1 after 100 cycles between 1 and 2.5 V at a rate of 1 C. Even at a rate of 30 C, a high discharge capacity of 115.1 mA h g-1 is still obtained, which is three times higher than the pristine mesoporous Li4Ti5O12 (m-LTO). The graphene nanosheets are incorporated into the m-LTO microspheres homogenously, which provide a high conductive network for electron transportation.  相似文献   

18.
利用室温固相自组装反应制备Co (Ⅱ)和Fe (Ⅱ)双席夫碱配合物,随后在硫粉存在下中温热处理,使该配合物同时发生热解碳化和固相硫化反应,从而获得N、S共掺杂碳限域的FeCoS2纳米复合物(记为FeCoS2⊂NSC)。通过粉末X射线衍射、透射电镜、X射线光电子能谱和热重分析技术分别对纳米复合物的物相、形貌结构、组分和含量等进行物理表征,并通过循环伏安、恒电流充放电技术测试其电化学储钠性能。研究结果表明,最优化条件下制备的复合物(FeCoS2⊂NSC-7001)中FeCoS2粒子的平均尺寸约为3.4 nm,且被均匀限域在N、S共掺杂的碳基体中;该复合物作为钠离子电池负极时,在0.1 A·g-1的电流密度下经过300次充放电循环,其可逆充电比容量仍高达310.4 mAh·g-1;即使在5 A·g-1的大电流密度下,其充电比容量也高达146.0 mAh·g-1,呈现优异的电化学储钠性能。  相似文献   

19.
Herein,a simple yet efficient hydrothermal strategy is developed to in-situ convert multi-layered niobium-based MXene(Nb2 CTx) to hierarchical Nb2 CTx/Nb2O5 composite.In the hybrid,the Nb2O5 nanorods are well dispersed in and/or on the Nb2 CTx.Thanks to the synergetic contributions from the high capacity of Nb2O5 and superb electrical conductivity of the two-dimensional Nb2 CTx  相似文献   

20.
Carbon-coated monoclinic Li3V2(PO4)3 (LVP/C) cathode material has been successfully prepared by a novel glycine-assisted sol–gel method. The product is investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM) and electrochemical method. In the range of 3.0–4.3 V, the LVP/C electrode presents excellent rate capability. It is 125.4 mAh g− 1 that can be delivered at 1 C charge–discharge rate and 99.5 mAh g− 1 is still obtained at 20 C charge–discharge rate. These results demonstrate that the carbon-coated LVP/C composite material prepared via a glycine-assisted sol–gel method has great potential for use in high-power lithium ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号