首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper describes the structure and magnetic properties of a novel cobalt 1-aminoethylidenediphosphonate compound, namely Co3{CH3C(NH3)(PO3H)(PO3)}2{CH3C(NH3)(PO3H)2}2(H2O)4·2H2O (1). The structure contains a trimer unit of Co3{CH3C(NH3)(PO3H)(PO3)}2 in which two equivalent phosphonate ligands chelate and bridge the three cobalt ions. Each trimer unit is further linked to its four equivalent neighbors through corner-sharing of CoO6 octahedra and CPO3 tetrahedra, forming a two-dimensional layer in the bc-plane which contains 12-membered rings. These layers are connected to each other by extensive hydrogen bonds. Magnetic studies show that weak antiferromagnetic interactions are mediated between the cobalt ions. Crystal data for 1: monoclinic, space group C2/c, a=27.727(4), b=7.1091(11), , β=118.488(3), , Z=2.  相似文献   

2.
A novel malonate-bridged copper (II) compound of formula {[Cu4(4,4′-bpy)8(mal)2(H2O)4](ClO4)2(H2O)4(CH3OH)2}n (4,4′-bpy = 4,4′-bipyridine; mal = malonate dianion) has been prepared and structurally characterized by X-ray crystallography. This compound exhibits a novel three-dimensional network being composed of Cu-4,4′-bipyridine layers which are pillared by malonate bridge ligands. The copper(II) ions has two different coordination environment.  相似文献   

3.
Copper complexes, [Cu(dm4bt)Cl(Hipht)] (1) and [{Cu(dm4bt)(H2O)(ipht)}4·2H2O] (2) (where dm4bt is 2,2′-dimethyl-4,4′-bithiazole, Hipht is hydrogen isophthalate and ipht is isophthalate) have been synthesized. These two complexes were characterized by IR, UV–Vis and EPR spectroscopy. Moreover; their single-crystal structures were studied by the X-ray diffraction method. Complex 1 has a monomer structure and copper has accepted a distorted square pyramidal structure. Isophthalic acid in 1 lost one of its protons and produced one bidentate carboxylate and one free carboxylic acid. Controlled deprotonation in the presence of ethylene diamine results in self-assemblies of 1 to form a tetramer complex of 2. Complex 2 has two kinds of spatial isomers which are resolved by EPR and X-ray.  相似文献   

4.
A hydrothermal reaction of WO3, CoCl2 and 4,4′-bipyridine, yields a novel organic-inorganic hybrid compound, Co2(bpy)6(W6O19)2, at 170°C. X-ray single crystal structure determination reveals a two-dimensional covalent structure belonging to monoclinic crystal system, space group C2/c, with cell parameters a=19.971(4) Å, b=11.523(2) Å, c=16.138(3) Å, β=96.49(3)°, V=3690.0 Å3 and Z=2. The hexatungstate, [W6O19]2−, acts as a building block in bidentate fashion to bridge the Co(II) centers in the crystal structure. The title compound is found to have an optical energy gap of 2.2 eV from UV-Vis-NIR reflectance spectra.  相似文献   

5.
A new 3-D inorganic-organic hybrid framework microporous material Zn3(bbdc)3(4,4′-bpy)·2(DMF)·4(H2O) (1), which is constructed by coordination of zinc ions with 4,4′-bibenzene-dicarboxylic acid (H2bbdc) and 4,4′-bipyridine (4,4′-bpy), was obtained at mild synthesis condition. Crystallographic data for the compound (1), C58H54N4O18Zn3, orthorhombic, space group Pbcn, a=14. 532(3) Å, b=25.037(5) Å, c=18.184(4) Å, Z=4, V=6616(2) Å3.  相似文献   

6.
A novel microporous coordination polymer [Co2(Hisor)2(4,4′-bpy)2(H2O)2]·4,4′-bpy was synthesized by hydrothermal reaction and characterized by single crystal X-ray diffraction, elemental analysis and IR spectrum. The crystal belongs to the monoclinic system and space group is P2/n with a=1.040 6(3) nm, b=1.138 8(4) nm, c=1.854 7(6) nm, β=102.991(6)°, V= 2.141 6(12) nm3, Z=2, Dc=1.443 Mg/m3, Mr=930.62, μ=0.842 mm-1, F(000)=952, GOF= 1.072, R=0.065 4, wR=0.146 8[I>2σ(I)]. There are two crystallographically independent Co(Ⅱ) ions in the title complex. The Hisor2- and 4,4′-bpy link the metal ions into 2D grids with dimension of 0.522 3 nm×1.138 8 nm. There are O—H…O and N—H…O hydrogen bonds in the complex resulting in the formation of 3D network with 1D channels, in which are free 4,4′-bpy molecules.  相似文献   

7.
The preparation, crystal structure and magnetic properties of a new oxalate-containing copper(II) chain of formula {[(CH3)4N]2[Cu(C2O4)2] · H2O}n (1) [(CH3)4N+ = tetramethylammonium cation] are reported. The structure of 1 consists of anionic oxalate-bridged copper(II) chains, tetramethylammoniun cations and crystallization water molecules. Each copper(II) ion in 1 is surrounded by three oxalate ligands, one being bidentate and the other two exhibiting bis-bidenate coordination modes. Although all the tris-chelated copper(II) units from a given chain exhibit the same helicity, adjacent chains have opposite helicities and then an achiral structure results. Variable-temperature magnetic susceptibility measurements of 1 show the occurrence of a weak ferromagnetic interaction through the oxalate bridge [J = +1.14(1) cm−1, the Hamiltonian being defined as H = –JnmSi · Sj]. This value is analyzed and discussed in the light of available magneto-structural data for oxalate-bridged copper(II) complexes with the same out-of-plane exchange pathway.  相似文献   

8.
Two new coordination polymers of copper(I) chloride and pyrazinic acid (pyz-H), namely [CuCl(pyz-H)2]·2H2O (1) and [Cu2Cl2(pyz)(H2O)]·H2O (2) have been prepared and characterized by spectroscopic, magnetic and crystallographic methods. The overall physical measurements suggest that 1 is diamagnetic and contains monodentate N-pyrazinic acid, whereas 2 is paramagnetic and contains tridentate N,N′,O- chelating bridging pyrazinato anion. In the structure of 1 as elucidated by X-ray single crystal analysis, the asymmetric units [CuCl(pyz)2] are linked together forming a zigzag chain with tetrahedral copper(I) environment. The two lattice water molecules form hydrogen bonds with the uncoordinated N atom and carboxylate group O atom of pyz-H molecules. The Cu–N bond lengths are 2.009(6) Å and Cu–Cl distances are 2.337(2) Å. Complex 2 has a three-dimensional structure with the chains [Cu(I)Cu(II)(C5H3N2O2)Cl2(H2O)] interconnected by [Cu(I)Cl2N] tetrahedral unit and [Cu(II)NO2Cl2] polyhedra. The Cu(I)–Cl and Cu(I)–N distances are 2.327(2)–2.581(2) Å and 1.988(6) Å, respectively, whereas the Cu(II)–Cl and Cu(II)–N bond lengths are 2.258(2), 2.581(2) Å, and 2.017(6) Å, respectively. Hydrogen bonds of the type O–HO are formed between lattice and coordinated water, and carboxylate oxygens of pyrazinato ligand giving rise to a three-dimensional network. The Cl anions act as bridging ligands in both complexes. The magnetic data of complex 2 have been measured from 2 to 300 K and discussed.  相似文献   

9.
The tridentate Schiff base ligand, 7-amino-4-methyl-5-aza-3-hepten-2-one (HAMAH), prepared by the mono-condensation of 1,2-diaminoethane and acetylacetone, reacts with Cu(BF4)2 · 6H2O to produce initially a dinuclear Cu(II) complex, [{Cu(AMAH)}2(μ-4,4′-bipy)](BF4)2 (1) which undergoes hydrolysis in the reaction mixture and finally produces a linear polymeric chain compound, [Cu(acac)2(μ-4,4′-bipy)]n (2). The geometry around the copper atom in compound 1 is distorted square planar while that in compound 2 is essentially an elongated octahedron. On the other hand, the ligand HAMAH reacts with Cu(ClO4)2 · 6H2O to yield a polymeric zigzag chain, [{Cu(acac)(CH3OH)(μ-4,4′-bipy)}(ClO4)]n (3). The geometry of the copper atom in 3 is square pyramidal with the two bipyridine molecules in the cis equatorial positions. All three complexes have been characterized by elemental analysis, IR and UV–Vis spectroscopy and single crystal X-ray diffraction studies. A probable explanation for the different size and shape of the reported polynuclear complexes formed by copper(II) and 4,4′-bipyridine has been put forward by taking into account the denticity and crystal field strength of the blocking ligand as well as the Jahn–Teller effect in copper(II).  相似文献   

10.
11.
Ytterbium(III) tetraaquatris(tetraoxorhenate(VII)), Yb(ReO4)3(H2O)4, was prepared by the reaction of Yb2O3 with concentrated HReO4 at room temperature. The colorless compound crystallizes in the monoclinic space group P21/n (No. 14) with four formula units per unit cell (a=730.5(1) pm, b=1484.1(5) pm, c=1311.7(2) pm, β=93.69(1)). The main feature of the crystal structure is the formation of chains 1[Yb(H2O)4(ReO4)2(ReO4)2/2] running along [100]. This arrangement shows distorted cubic antiprisms of [Yb(H2O)4(ReO4)2(ReO4)2/2] interconnected via the ReO4 ligands. The chains are held together in the solid by hydrogen bonding. The compound is paramagnetic and follows the Curie-Weiss law with a magnetic moment of 4.0 μB at room temperature and θ=−42 K. It loses hydration water in two steps at temperatures below 400 K; decomposition begins at 850 K, forming Yb2O3(Re2O7)2 and is complete at 1350 K leading to Yb2O3 as final product.  相似文献   

12.
The molecular structure of a second form of [Ni(2,2′-bipyridine)(H2O)3(NO3)](NO3) is reported. The previous report is for a blue monoclinic polymorph. The second form is orthorhombic and crystallises as green blocks with unit cell parameters a = 9.1201(12) Å, b = 14.444(2) Å, c = 21.805(4) Å, V = 2872.4(8) Å3, Z = 8. The complex was characterised by elemental analysis, infrared spectroscopy, UV-Vis spectroscopy, and thermogravimetry. The bipyridine acts as a bidentate ligand to Ni2+ and the octahedral coordination is completed by three water molecules and one monodentate nitrate ion. A second nitrate forms hydrogen bonds to the bound water molecules. The difference between the two forms in terms of the molecular geometry is described in relation to other similar compounds. The key difference between the two forms is the orientation of the two nitrate anions, and hence the hydrogen bonding present.  相似文献   

13.
The interaction of diethyl (pyridyn-2-ylmethyl)phosphonate (2-pmpe) with Cu(NO3)2 · 6H2O leads to a partial hydrolysis of the starting ligand and formation of the compound of the formula Cu2(2-mpmpe)2(H2O)2(NO3)2, where 2-mpmpe = monoethyl (pyridyn-2-ylmethyl)phosphonate. The crystal and molecular structure of a copper(II) compound was determined by single X-ray diffraction method. Its structure consists of five-coordinated in distorted square planar geometry (CuNO4 chromophore) copper(II) ions doubly bridged by OPO from phosphonate. The Cu?Cu distance is 4.69 Å. The crystal packing is determined by the interdinuclear hydrogen bond system, which leads to a three-dimensional (3D) H-bonds network. The compound was characterized by infrared, ligand field, EPR spectroscopy, and magnetic studies. The magnetic properties of the title compound investigated over the 1.8–300 K, revealed the occurrence of a weak ferromagnetic coupling through phosphonate bridge (J = 1.86 cm−1) and interdimer superexchange coupling through H-bond network (zJ′ = −0.17 cm−1). Spectroscopic and magnetic properties are presented in the light of crystal structure.  相似文献   

14.
Nickel and copper complexes containing 1,3,5-benzenetricarboxylic acid, with a combination of selected N-donor ligands and Schiff bases, of the composition Ni3(bimz)6(btc)2 · 12H2O (1), Ni3(btz)9(btc)2 · 12H2O (2), Ni2(L1)(btc) · 7H2O (3), Ni3(L2)2(Hbtc) · 9H2O (4), Ni2(L3)(btc) · 4H2O (5), Cu2(L4)(btc) · 7H2O (6), [Cu3(pmdien)3(btc)](ClO4)3 · 6H2O (7) and [Cu3(mdpta)3(btc)](ClO4)3 · 4H2O (8); H3btc = 1,3,5-benzenetricarboxylic acid, bimz = benzimidazole, btz = 1,2,3-benztriazole, L1 = 2-[(phenylimino)methyl]phenol, L2 = N,N′-bis-(salicylidene)propylenediamine, L3 = 2-{[(2-nitrophenyl)methylene]amino}phenol, L4 = 2-[(4-methoxy-phenylimino)methyl]phenol, pmdien = N,N,N′,N″,N″-pentamethyldiethylenetriamine, mdpta = N,N-bis-(3-aminopropyl)methylamine, have been synthesized. The complexes have been studied by elemental analysis, IR, UV–Vis spectroscopies, magnetochemical and conductivity measurements and selected compounds also by thermal analysis. The crystal and molecular structure of complex 8 was solved. The complex is trinuclear with btc3−-bridge. The coordination polyhedron around each copper atom can be described as a distorted square with a CuON3 chromophore formed by one oxygen atom of carboxylate and three nitrogen atoms of mdpta. The magnetic properties of 8 have been studied in the 1.8–300 K temperature range revealing a very weak antiferromagnetic exchange interaction with J = −0.56 cm−1 for g = 2.13(9). The antimicrobial activities against selected strains of bacteria were evaluated. It was found that only complex 5 is able to inhibit the growth of Staphylococcus strains.  相似文献   

15.
The organo-templated iron(III) borophosphate (C3H12N2)FeIII 6(H2O)4[B4P8O32(OH)8] was prepared under mild hydrothermal conditions (at 443 K) and the crystal structure was determined from single crystal X-ray data at 295 K (monoclinic, P21/c (No. 14), a=5.014(2) Å, b=9.309(2) Å, c=20.923(7) Å, β=110.29(2)°, V=915.9(5) Å3, Z=2, R1=0.049, wR2=0.107 for all data, 2234 observed reflections with I>2σ(I)). The title compound contains a complex inorganic framework of borophosphate trimers [BP2O8(OH)2]5− together with FeO4(OH)(H2O)- and FeO4(OH)2-octahedra forming channels with ten-membered ring apertures in which the diaminopropane cations are located. The magnetization measurements confirm the Fe(III)-state and show an antiferromagnetic ordering at TN≈14.0(1) K.  相似文献   

16.
Two novel three-dimensional five-connected coordination polymers [M2(C3H2O4)2(H2O)2(μ2-hmt)]n with 4466 topologies (M=Zn, Cu; hmt=hexamethylenetetramine) were synthesized and characterized by elemental analysis, crystal structure, IR, thermal gravimetric analyses. Both [Zn2(C3H2O4)2(H2O)2(μ2-hmt)]n and [Cu2(C3H2O4)2(H2O)2(μ2-hmt)]n all crystallize in the orthorhombic system, space group Imm2, and with Z=2. Metal ions have all octahedral geometry coordinated by four oxygen atoms from three malonates, one oxygen atom from a water molecule and one nitrogen atom of hmt ligand. Each malonate binds a metal ion with its two oxygen atoms in a chelating mode and connects to adjacent two metal ions with another two oxygen atoms to form an infinite wavy layer. The layers are bridged by μ2-hmt molecules to form a three-dimensional framework with channels. The magnetic susceptibility data show there is a weak antiferromagnetic exchange interaction in the complex [Cu2(C3H2O4)2(H2O)2(μ2-hmt)]n.  相似文献   

17.
Fe[(CH3(CH2)2PO3)(H2O)] (1) and Fe[(CH3(CH2)17PO3)(H2O)] (2) were synthesized by reaction of FeCl2·6H2O and the relevant phosphonic acid in water in presence of urea and under inert atmosphere. The compounds were characterized by elemental and thermogravimetric analyses, UV-visible and IR spectroscopy. The crystal structure of (1) was determined from X-ray single crystal diffraction studies at room temperature: monoclinic symmetry, space group P21, , , , and β=98.62(3)°. The compound is lamellar and the structure is hybrid, made of alternating inorganic and organic layers along the c direction. The inorganic layers consist of Fe(II) ions octahedrally coordinated by five phosphonate oxygen atoms and one from the water molecule, separated by bi-layers of propyl groups. A preliminary structure characterization of compound (2) suggests a similar layered structure, but with an interlayer spacing of 40.3 Å. The magnetic properties of the compounds were both studied by a dc and ac SQUID magnetometer. Fe[(CH3(CH2)2PO3)(H2O)] (1) obeys the Curie-Weiss law at temperatures above 50 K (, ), indicating a Fe +II oxidation state, a high-spin d6 (S=2) electronic configuration and an antiferromagnetic exchange couplings between the near-neighbouring Fe(II) ions. Below , Fe[(CH3(CH2)2PO3)(H2O)] exhibits a weak ferromagnetism. The critical temperature of has been determined by ac magnetic susceptibility measurements. Compound (2) shows the same paramagnetic behaviour of the iron (II) propyl derivative. The values of C and θ were found to be and −44 K, respectively, thus suggesting the presence of Fe +II ion in the S=2 spin state and antiferromagnetic interactions between Fe(II) ions at low temperatures. Zero-field and field cooled magnetic susceptibility vs. T plots do not overlap below , suggesting the presence of an ordered magnetic state. The critical temperature, TN, has been located by the peaks at from the ac susceptibility (χ′and χ″) vs. T plots. Below TN hysteresis loops recorded in the temperature region show an S-shape, while below 15 K assume an ellipsoid form. They reveal that compound (2) is a weak ferromagnet. The critical temperature TN in these layered Fe(II) alkylphosphonates is independent of the distance between the inorganic layers.  相似文献   

18.
Employing 4,4′-bipyridine as a bridged ligand, a new three-dimensional (3-D) hybrid zinc phosphate [Zn2(HPO4)2(4,4′-bipy)]·3H2O has been prepared under hydrothermal conditions and characterized by single crystal X-ray diffraction. This compound crystallizes in the monoclinic space group C2/c, with cell parameters, , , , β=90.21(3)°, and Z=4. The connectivity of the ZnO3N and HPO4 tetrahedra results in a 2-D neutral layer that with interesting 4,82 net along the bc plane. Furthermore, the 4,4′-bipyridine molecule links the 4,82 net into a 3-D structure. The water molecules sit in the middle of the channels and interact with the framework via hydrogen bonds. The compound exhibits intense photoluminescence at room temperature.  相似文献   

19.
Two polymorphs of an organic-inorganic hybrid compound, Fe(2,2′-bpy)(HPO4)(H2PO4) (1 and 2) (2,2′-bpy=2,2′-bipyridine), have been synthesized by hydrothermal methods and structurally characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and magnetic susceptibility. Crystal data are as follows: Polymorph 1, monoclinic, space group P21/n (No. 14), a=10.904(2) Å, b=6.423(1) Å, c=19.314(3) Å, β=101.161(3)°, and Z=4; Polymorph 2, monoclinic, space group P21/c (No. 14), a=11.014(1) Å, b=15.872(2) Å, c=8.444(1) Å, β=109.085(3)°, and Z=4. Polymorph 1 adopts a chain structure in which each iron atom is coordinated by two nitrogen atoms from 2,2′-bpy ligand and four phosphate oxygen atoms. These infinite chains are extended into a 3-D supramolecular array via π-π stacking interactions of the lateral 2,2′-bpy ligands. The structure of polymorph 2 consists of the same building units, namely FeO4N2 octahedron, HPO4 and H2PO4 tetrahedra, and 2,2′-bpy ligand, which are linked through their vertices forming an undulated sheetlike structure with 4,12 network. Adjacent layers are extended into a 3-D array via π-π stacking interactions of the aromatic groups. Magnetic susceptibility measurement results confirm that the iron atoms in both compounds are present in the +3 oxidation state.  相似文献   

20.
A novel complex [Cu(NIT2Py)(PDA)(H2O)]·(CH3OH)(H2O) has been synthesized and structurally characterized by X-ray diffraction methods. It crystallizes in the monoclinic space group P2(1)/c. The structure consists of [Cu(NIT2Py)(PDA)(H2O)] moiety, one solvent methanol molecule and one water molecule. The copper(II) ion is in a distorted octahedral environment: one nitrogen atom and one oxygen atom from the NIT2Py, one nitrogen atom from the PDA (2,6-pyridine dicarboxylic acid) and one oxygen atom from the aqueous in the basal plane; two oxygen atoms from the PDA in the axial position. The units of [Cu(NIT2Py)(PDA)(H2O)] were connected as one dimension chain by the intermolecular hydrogen bonds. The complex exhibits intramolecular antiferromagnetic interactions between the Cu(II) ion and the NIT2Py.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号