首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
As part of the study of interaction of the Ba2RCu3O6+z (R=lanthanides and Y) superconductor with SrTiO3 buffer, phase equilibria of the subsystem, R2O3-TiO2-CuO (R=Nd, Y, and Yb), have been investigated in air at 960 °C. While the phase relationships of the two phase diagrams with smaller R (Y and Yb) are similar, substantial differences were found in the Nd2O3-TiO2-CuO system, partly due to different phase formation in the binary R2O3-TiO2 and R2O3-CuO systems. R2CuTiO6 and R2Cu9Ti12O36 were the only ternary phases established in all the three diagrams. R2Cu9Ti12O36 belongs to the perovskite-related [AC3](B4)O12 family which is cubic Im3. Depending on the size of R3+, R2CuTiO6 crystallizes in two crystal systems: Pnma (R=La-Gd), and P63cm (R=Dy-Lu). The structure and crystal chemistry of the Pnma series of R2CuTiO6 (R=La, Nd, Sm, Eu, and Gd) are discussed in detail in this paper. Patterns for selected members of R2CuTiO6 have also been prepared and submitted for inclusion in the Powder Diffraction File (PDF).  相似文献   

2.
RMn2O5 (R=La, Pr, Nd, Tb, Bi) crystallites were prepared by a mild hydrothermal method and characterized by powder X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy (XPS) and magnetic measurement. The formation of manganates was sensitive to the alkalinities and Mn-containing precursors of the reaction mixtures. This family of manganates is isostructural and has a space group of Pbam. The magnetic measurements for RMn2O5 showed an antiferromagnetic transition. The strong irreversibility between the ZFC and FC curves indicated a helicoidally magnetic structure below 40 K. The max d.c. susceptibilities of LaMn2O5+δ (δ=0.01, 0.06, 0.08, 0.16, 0.17) were found to be variable and the excess oxygen (δ) in the compounds was influenced by the alkalinity used in the hydrothermal synthesis.  相似文献   

3.
Phase equilibria and crystal structures of ternary compounds were determined in the systems Ce-Pd-B and Yb-Pd-B at 850 °C in the concentration ranges up to 45 and 33 at% of Ce and Yb, respectively, employing X-ray single crystal and powder diffraction. Phase relations in the Ce-Pd-B system at 850 °C are governed by formation of extended homogeneity fields, τ2-CePd8B2−x (0.10<x<0.48); τ3-Ce3Pd25−xB8−y (1.06<x<1.87; 2.20<y<0.05), and CePd3Bx (0<x<0.65) the latter arising from binary CePd3. Crystallographic parameters for the new structure type τ2-CePd8B2−x (space group C2/c, a=1.78104(4) nm, b=1.03723(3) nm, c=1.16314(3), β=118.515(1)° for x=0.46) were established from X-ray single crystal diffraction. The crystal structures of τ2-CePd8B2−x and τ3-Ce3Pd25−xB3−y are connected in a crystallographic group-subgroup relationship. Due to the lack of suitable single crystals, the novel structure of τ1-Ce6Pd47−xB6 (x=0.2, C2/m space group, a=1.03594(2) nm, b=1.80782(3) nm, c=1.01997(2) nm, β=108.321(1)°) was determined from Rietveld refinement of X-ray powder diffraction data applying the structural model obtained from single crystals of homologous La6Pd47−xB6 (x=0.19) (X-ray single crystal diffraction, new structure type, space group C2/m, a=1.03988(2) nm, b=1.81941(5) nm, c=1.02418(2) nm, β=108.168(1)°).The Yb-Pd-B system is characterized by one ternary compound, τ1-Yb2Pd14B5, forming equilibria with extended solution YbPd3Bx, YbB6, Pd5B2 and Pd3B. The crystal structures of both Yb2Pd14B5 and isotypic Lu2Pd14B5 were determined from X-ray Rietveld refinements and found to be closely related to the Y2Pd14B5-type (I41/amd). The crystal structure of binary Yb5Pd2−x (Mn5C2-type) was confirmed from X-ray single crystal data and a slight defect on the Pd site (x=0.06) was established.The three structures τ1-Ce6Pd47−xB6, τ2-CePd8B2−x and τ3-Ce3Pd25−xB8−y are related and can be considered as the packings of fragments observed in Nd2Fe14B structure with different stacking of common structural blocks.Physical properties for Yb2Pd13.6B5 (temperature dependent specific heat, electrical resistivity and magnetization) yielded a predominantly Yb-4f13 electronic configuration, presumably related with a magnetic instability below 2 K. Kondo interaction and crystalline electric field effects control the paramagnetic temperature domain.  相似文献   

4.
Single crystals of the double perovskite rhenates A2BReO6 (A=Sr, Ba; B=Li, Na) were grown out of molten hydroxide fluxes. Single crystals of orange/yellow Ba2LiReO6, Ba2NaReO6 and Sr2LiReO6 were solved in the cubic, Fm-3m space group with a=8.1214(11) Å, 8.2975(3) Å, and 7.9071(15) Å, respectively, while Sr2NaReO6 was determined to be monoclinic P21/n with a=5.6737(6) Å, b=5.7988(6) Å, c=8.0431(8) Å, and β=90.02(6) °. The cubic structure consists of a rock salt lattice of corner-shared ReO6 and MO6 (M=Li, Na) octahedra which, in the monoclinic structure, are both tilted and rotated. A discrepancy exists between the symmetry of Sr2LiReO6 indicated by the single-crystal refinement of flux-grown crystals (cubic, Fm-3m) and the symmetry indicated by the powder diffraction data collected on polycrystalline samples prepared by the ceramic method (tetragonal, I4/m). It is possible that the cubic crystals are a kinetic product that forms in small quantities at low temperatures, while the powder represents the more stable polymorph that forms at higher reaction temperature.  相似文献   

5.
Two series of intermetallic alloys, RT2Si and RTSi2, have been synthesized from stoichiometric compositions. The crystal structures of EuPt1+xSi2−x (CeNiSi2-type), CeIr2Si (new structure type), YbPd2Si and YbPt2Si (both YPd2Si-type) have been elucidated from X-ray single crystal CCD data, which were confirmed by XPD experiments. The crystal structures of LaRh2Si and LaIr2Si (CeIr2Si-type), {La,Ce,Pr,Nd}AgSi2 (all TbFeSi2-type), and EuPt2Si (inverse CeNiSi2-type) were characterized by XPD data. RT2Si/RTSi2 compounds were neither detected in as-cast alloys Sc25Pt50Si25, Eu25Os25Si50 and Eu25Rh25Si50 nor after annealing at 900 °C. Instead, X-ray single crystal data prompted Eu2Os3Si5 (Sc2Fe3Si5-type) and EuRh2+xSi2−x (x=0.04, ThCr2Si2-type) as well as a new structure type for Sc2Pt3Si2 (own type).  相似文献   

6.
Using diamond anvil cell technique with angle dispersive X-ray diffraction (ADXD) of synchrotron radiation and electrical conductivity measurements, we have observed that CuO2 chain compound Li2CuO2 transforms from ambient orthorhombic symmetry into a new phase at above 5.4 GPa and room temperature. The new phase was found to be of monoclinic structure with an increased oxygen coordination number of Cu2+ from four at ambient to six at high pressure that provides a structural basis of the evolution of principle physical properties. The high pressure phase of Li2CuO2 is discussed in line with the first principle calculations.  相似文献   

7.
Bi5AgNb4O18 is a new phase, which was discovered during the phase equilibrium study of the Bi2O3-Ag2O-Nb2O5 system. Bi5AgNb4O18 was prepared at 750°C and is stable in air up to its melting temperature of 1160.1±5.0°C (standard error of estimate). Results of a Rietveld refinement using neutron powder diffraction confirmed that Bi5AgNb4O18 is isostructural with Bi3TiNbO9, Bi5NaNb4O18, and Bi5KNb4O18. The structure was refined in the orthorhombic space group A21am, Z=2, and the lattice parameters are a=5.4915(2) Å, b=5.4752(2) Å, c=24.9282(8) Å, and V=749.52(4) Å3. The structure can be described as the m=2 member of the Aurivillius family, (Bi2O2)2+ (Am−1BmO3m+1)2− (where A=Bi and B=Ag, Nb), which is characterized by perovskite-like (Am−1BmO3m+1)2− slabs regularly interleaved with (Bi2O2)2+ layers. The octahedral [NbO6] units are distorted with Nb-O distances ranging from 1.856(4) to 2.161(2) Å and the O-Nb-O angles ranging from 82.6(3)° to 98.5(3)°. These octahedra are tilted about the a- and c-axis by about 10.3° and 12.4°, respectively. Ag was found to substitute exclusively into the Bi-site that is located in the layer between the two distorted [NbO6] units. Although the Ag substitutes into the Bi-site with the Bi:Ag ratio of 1:1, the existence of a superlattice was not detected using electron diffraction. A comparison of (Bi2O2)2+(Am−1NbmO3m+1)2− structures (where A=Ag, Na, and K) revealed a relation between the pervoskite tolerance factor, t, and structural distortion. The reference pattern for Bi5AgNb4O18 has been submitted to the International Centre for Diffraction Data (ICDD) for inclusion in the Powder Diffraction File.  相似文献   

8.
The subsolidus phase relations of R2O3-CaO-CuO ternary systems (R=Nd, Sm, Gd, Tm) have been investigated by X-ray powder diffraction. All samples were synthesized at about 950° in air. There exists a ternary compound Ca14−xRxCu24O41 (x = 4 for R=Nd, Gd and x = 5 for R = Sm) and a ternary solid solution Ca2+xR2−xCu5O10 (R=Nd, Sm, Gd, Tm) with a wide composition range Δx of about 0.6. The compound Ca14−xRxCu24O41 possesses a layered orthorhombic structure and is isostructural to Sr14−xCaxCu24O41. The lattice parameters a and c of the compound are basically independent of the ionic radius of R, while the lattice parameter b and unit-cell volume V decrease substantially with the decrease of the ionic radii of R. The Ca2+xR2−xCu5O10 solid solution is isostructural to Ca2+xY2−xCu5O10, the structure of which is based on an orthorhombic “NaCuO2-type” subcell containing infinite one-dimensional chains of edge-shared square planar cuprate groups crosslinked by the layered cations Ca and R that locate in the inter-chain tunnels.  相似文献   

9.
The reduced Ruddlesden-Popper phases, Sr3Co2O5+δ with δ=0.91, 0.64 and 0.38, have been prepared in a nitrogen atmosphere. The crystal structures were determined by powder neutron diffraction. Oxygen vacancies are found both in O(3) and O(4) sites but the majority are along one crystallographic axis in the CoO2 plane, inducing an orthorhombic distortion of the normally tetragonal n=2 Ruddelsden-Popper structure. Superstructures due to oxygen ordering are observed by electron microscopy. The magnetic measurements reveal complex behavior with some ferromagnetic interactions present for Sr3Co2O5.91 and Sr3Co2O5.64.  相似文献   

10.
Single crystals of a new form of L-Ta2O5 with a 19×b superstructure have been synthesised by flux growth. The phase is most likely stabilised by the incorporation of a small amount of lithium (0.14 wt% Li) from the flux. The phase has C-centred monoclinic symmetry with , (), , γ=90.00(1)°. The structure was refined in space group C112/m to R1=0.044 for 814 unique reflections with F>4σ(F). The structure can be described as comprising chains of edge-shared TaO7 pentagonal bipyramids that are regularly folded at (010) planes to give sinusoidal chains along [010]. These chains are interconnected along [100] and [001] by corner sharing, creating inter-chain regions that are occupied by isolated TaO6 octahedra and pairs of corner-shared octahedra. A comparison with published data for high-quality refinements of related structures has led to the development of a general model that can explain the structural chemistry variations in the known L-Ta2O5-related structures. A shorthand notation is presented for representing the structures, based on the sequence along [010] of the interchain octahedra.  相似文献   

11.
12.
Single crystals of double-perovskite type lanthanide magnesium iridium oxides, Ln2MgIrO6 (Ln=Pr, Nd, Sm-Gd) have been grown in a molten potassium hydroxide flux. The compounds crystallize in a distorted 1:1 rock salt lattice, space group P21/n, consisting of corner shared MO6 (M=Mg2+ and Ir4+) octahedra, where the rare earth cations occupy the eight-fold coordination sites formed by the corner shared octahedra. Pr2MgIrO6, Nd2MgIrO6, Sm2MgIrO6, and Eu2MgIrO6 order antiferromagnetically around 10-15 K.  相似文献   

13.
Single crystals of Ln5Ru2O12 (Ln=Pr, Nd, Sm-Tb) were grown out of either NaOH or KOH fluxes in sealed silver tubes. The crystals of all the phases were observed to be twinned as confirmed by TEM studies. The series crystallize in the C2/m monoclinic system with lattice parameters, a=12.4049(4)-12.7621(6) Å, b=5.8414(2)-5.9488(3) Å, c=7.3489(2)-7.6424(4) Å, β=107.425(3)-107.432(2)° and Z=2. The crystal structure is isotypic with the defect/disorder model of Ln5Re2O12 (Ln = Y, Gd) and consists of one dimensional edge shared RuO6 octahedral chains separated by a two dimensional LnOx polyhedral framework. Magnetic measurements indicate paramagnetic and antiferromagnetic behavior for Ln=Nd, Sm-Gd and Ln=Tb, respectively.  相似文献   

14.
The compounds M[PO2(OH)2]2·2H2O (M=Mg, Mn, Fe, Co, Ni, Zn, Cd) were prepared from super-saturated aqueous solutions at room temperature. Single-crystal X-ray structure investigations of members with M=Ni, Zn, Cd were performed at 295 and 120 K. The space-group symmetry is P21/n, Z=2. The unit-cell parameters are at 295/120 K for M=Ni: a=7.240(2)/7.202(2), b=9.794(2)/9.799(2), c=5.313(1)/5.285(1) Å, β=94.81(1)/94.38(1)°, V=375.4/371.9 Å3; M=Zn: a=7.263(2)/7.221(2), b=9.893(2)/9.899(3), c=5.328(1)/5.296(2) Å, β=94.79(1)/94.31(2)°, V=381.5/377.5 Å3; M=Cd: a=7.356(2)/7.319(2), b=10.416(2)/10.423(3), c=5.407(1)/5.371(2) Å, β=93.85(1)/93.30(2)°, V=413.4/409.1 Å3. Layers of corner-shared MO6 octahedra and phosphate tetrahedra are linked by three of the four crystallographically different hydrogen bonds. The fourth hydrogen bond (located within the layer) is worth mentioning because of the short Oh?O bond distance of 2.57-2.61 Å at room temperature (2.56-2.57 Å at 120 K); only for M=Mg it is increased to 2.65 Å. Any marked temperature-dependent variation of the unit-cell dimension is observed only vertical to the layers. The analysis of the infrared (IR) spectroscopy data evidences that the internal PO4 vibrations are insensitive to the size and the electronic configuration of the M2+ ions. The slight strengthening of the intra-molecular P-O bonds in the Mg salt is caused by the more ionic character of the Mg-O bonds. All IR spectra exhibit the characteristic “ABC trio” for acidic salts: 2900-3180 cm−1 (A band), 2000-2450 cm−1 (B band) and 1550-1750 cm−1 (C band). Both the frequency and the intensity of the A band provide an evidence that the PO2(OH)2 groups in M[PO2(OH)2]2·2H2O compounds form weaker hydrogen bonds as compared with other acidic salts with comparable O?O bond distances of about 2.60 Å. The observed shift of the O-H stretching vibrations of the water molecule in the order M=Mg>Mn≈Fe≈Co>Ni>Zn≈Cd has been discussed with respect to the influence of both the character and the strength of M↔H2O interactions.  相似文献   

15.
The La2CuO4 crystal nanofibers were prepared by using single-walled carbon nanotubes as templates under mild hydrothermal conditions. The steam reforming of methanol (SRM) to CO2 and H2 over such nanofiber catalysts was studied. At the low temperature of 150 °C and steam/methanol=1.3, methanol was completely (100%, 13.8 g/h g catalyst) converted to hydrogen and CO2 without the generation of CO. Within the 60 h catalyst lifespan test, methanol conversion was maintained at 98.6% (13.6 g/h g catalyst) and with 100% CO2 selectivity. In the meantime, for distinguishing the advantage of nanoscale catalyst, the La2CuO4 bulk powder was prepared and tested for the SRM reaction for comparison. Compared with the La2CuO4 nanofiber, the bulk powder La2CuO4 showed worse catalytic activity for the SRM reaction. The 100% conversion of methanol was achieved at the temperature of 400 °C, with the products being H2 and CO2 together with CO. The catalytic activity in terms of methanol conversion dropped to 88.7% (12.2 g/h g catalyst) in 60 h. The reduction temperature for nanofiber La2CuO4 was much lower than that for the La2CuO4 bulk powder. The nanofibers were of higher specific surface area (105.0 m2/g), metal copper area and copper dispersion. The in situ FTIR and EPR experiments were employed to study the catalysts and catalytic process. In the nanofiber catalyst, there were oxygen vacancies. H2-reduction resulted in the generation of trapped electrons [e] on the vacancy sites. Over the nanofiber catalyst, the intermediate H2CO/HCO was stable and was reformed to CO2 and H2 by steam rather than being decomposed directly to CO and H2. Over the bulk counterpart, apart from the direct decomposition of H2CO/HCO to CO and H2, the intermediate H2COO might go through two decomposition ways: H2COO=CO+H2O and H2COO=CO2+H2.  相似文献   

16.
In attempts to synthesize lanthanide(III) nitride iodides with the formula M2NI3 (M=La-Nd), moisture-sensitive single crystals of the first quaternary sodium lanthanide(III) nitride iodides NaM4N2I7 (orthorhombic, Pna21; Z=4; a=1391-1401, b=1086-1094, c=1186-1211 pm) could be obtained. The dominating structural features are chains of trans-edge linked [NM4]9+ tetrahedra, which run parallel to the polar 21-axis [001]. Between the chains, direct bonding via special iodide anions generates cages, in which isolated [NaI6]5- octahedra are embedded. The IR spectrum of NaLa4N2I7 recorded from 100 to 1000 cm-1 shows main bands at υ=337, 373 and 489 cm-1. With decreasing radii of the lanthanide trications these bands, which can be assigned as an influence of the vibrations of the condensed [NM4]9+ tetrahedra, are shifted toward higher frequencies for the NaM4N2I7 series (M=La-Nd), following the lanthanide contraction.  相似文献   

17.
The total syntheses of (R)-argentilactone (five steps, 25% overall yield) and (R)-goniothalamin (three steps, 61% overall yield) have been described through the enantioselective catalytic allylation of aldehydes (including a propargylic aldehyde) which provided a rapid access to these natural products that display very interesting biological activities.  相似文献   

18.
Enantioselective oxodiene Diels-Alder reactions catalyzed by (1R,2R)-DPEN-derived triazolium salts were realized successfully. With 0.5 mol % of (1R,2R)-DPEN-derived triazolium salt C and 150 mol % of Et3N, the reactions of various α-chloroaldehydes (α-bromoaldehyde) with substituted enones led to 3,4-dihydropyridinones and their derivatives in good yields, diastereoselectivities, and enantioselectivities (up to 97% ee).  相似文献   

19.
The quaternary manganese sulfides BaLn2MnS5 (Ln=La, Ce, Pr) consist of (MnS4)6− anions separated with short S?S distances slightly longer than the van der Waals distance. Nevertheless, these sulfides are known to undergo a three-dimensional (3D) antiferromagnetic ordering at a reasonably high temperature (i.e., TN=58.5, 62.0 and 64.5 K for Ln=La, Ce and Pr, respectively). The origin of this observation was probed by studying the Mn-S?S-Mn super-superexchange interactions of BaLn2MnS5 on the basis of spin dimer analysis. The non-bonding S?S contacts in the vicinity of the van der Waals distance are found essential in determining the strengths of the Mn-S?S-Mn super-superexchange interactions. The antiferromagnetic spin exchange between adjacent (MnS4)6− anions along the c-direction (J2) is calculated to be stronger than that in the ab-plane (J1) by a factor of ∼10, so that the strongly interacting spin units of BaLn2MnS5 (Ln=La, Ce, Pr) are 1D chains made up of the exchange paths J2. The relative strengths of the spin exchange interactions for the J1 and J2 paths are consistent with the finding that the Néel temperatures of BaLn2MnS5 are reasonably high, and they increase in the order BaLa2MnS5<BaCe2MnS5< BaPr2MnS5.  相似文献   

20.
The synthesis, structure, and physical properties of five R-type Ru ferrites with chemical formula BaMRu5O11 (M=Li and Cu) and BaM2Ru4O11 (M′=Mn, Fe and Co) are reported. All the ferrites crystallize in space group P63/mmc and consist of layers of edge sharing octahedra interconnected by pairs of face sharing octahedra and isolated trigonal bipyramids. For M=Li and Cu, the ferrites are paramagnetic metals with the M atoms found on the trigonal bipyramid sites exclusively. For M′=Mn, Fe and Co, the ferrites are soft ferromagnetic metals. For M′=Mn, the Mn atoms are mixed randomly with Ru atoms on different sites. The magnetic structure for BaMn2Ru4O11 is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号