首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new organically templated indium selenide, [C6H16N2][In2Se3(Se2)], has been prepared hydrothermally from the reaction of indium, selenium and trans-1,4-diaminocyclohexane in water at 170 °C. This material was characterised by single-crystal and powder X-ray diffraction, thermogravimetric analysis, UV-vis diffuse reflectance spectroscopy, FT-IR and elemental analysis. The compound crystallises in the monoclinic space group C2/c (a=12.0221(16) Å, b=11.2498(15) Å, c=12.8470(17) Å, β=110.514(6)°). The crystal structure of [C6H16N2][In2Se3(Se2)] contains anionic chains of stoichiometry [In2Se3(Se2)]2−, which are aligned parallel to the [1 0 1] direction, and separated by diprotonated trans-1,4-diaminocyclohexane cations. The [In2Se3(Se2)]2− chains, which consist of alternating four-membered [In2Se2] and five-membered [In2Se3] rings, contain perselenide (Se2)2− units. UV-vis diffuse reflectance spectroscopy indicates that [C6H16N2][In2Se3(Se2)] has a band gap of 2.23(1) eV.  相似文献   

2.
Three new thiogermanates (enH)4Ge2S6 (1) and [M(en)3]2Ge2S6 (M=Mn (2), Ni (3); en=ethylenediamine) were synthesized using GeO2 and S8 as starting materials in molar ratio of 1:0.5 under solvothermal conditions. These compounds suggest that the dimeric [Ge2S6]4− anion is likely to be the main germanium-containing species in en system and it also might be preferred as counter anions by the transition metal complex cations in crystallization. The cations of [Mn(en)3]2+ and [Ni(en)3]2+ are even better mineralizers than the protonated amine of [enH]+. The crystal systems of [Ge2S6]4− compounds are related to entities of cations and intermolecular reactions between cations and [Ge2S6]4− anions. The compounds remove ethylenediamine and H2S molecules in multi steps when being heated under nitrogen stream.  相似文献   

3.
Thioantimonate compounds of [Mn(en)3]2Sb2S5 (1) and [Ni(en)3(Hen)]SbS4 (2) (en=ethylenediamine) were prepared by reaction of transition metal chloride with Sb and S8 powders under solvothermal conditions. Compound 1 consists of discrete [Sb2S5]4− anion, which is formed by corner-sharing SbS3 trigonal pyramids. Compound 2 is composed of discrete tetrahedral [SbS4]3− anion. The compounds 1 and 2 are charge compensated by [M(en)3]2+ cations, whereas in the crystal of 2 there is another counter ion of [Hen]+. The results of the synthesis suggest that the temperature, the concentration and the existing states of the starting materials and so on are important for the structure and composition of the final products. In addition, the oxidation-state of antimony might be related to the molar ratio of the reactants. Excess amount of elemental S is beneficial to the higher oxidation-state of thioantimonate (V). Compound 1 decomposes from 150°C to 350°C, while compound 2 decomposes from 200°C to 350°C remaining Sb2S3 and NiSbS as residues.  相似文献   

4.
The novel silver(I)thioantimonates(III) [C4N2H14][Ag3Sb3S7] (I) (C4N2H12=1,4-diaminobutane) and [C2N2H9]2[Ag5Sb3S8] (II) (C2N2H8=ethylenediamine) were synthesized under solvothermal conditions using AgNO3, Sb, S and the amines as structure directing molecules. Both compounds crystallize as orange needles with lattice parameters a=6.669(1) Å, b=30.440(3) Å, c=9.154(1) Å for I (space group Pnma), and a=6.2712(4) Å, b=15.901(1) Å, c=23.012(2) Å, β=95.37(1)° for II (space group P21/n). In both compounds the primary building units are trigonal SbS3 pyramids, AgS3 triangles and AgS4 tetrahedra. In I the layered [Ag3Sb3S7]2− anion is constructed by two different chains. An [Sb2S4] chain running along [100] is formed by vertex sharing of SbS3 pyramids. The second chain contains a Ag3SbS5 group composed of the AgS4 tetrahedron, two AgS3 units and one SbS3 pyramid. The Ag3SbS5 units are joined via S atoms to form the second chain which is also directed along [100]. The layered anion is then obtained by condensation of the two individual chains. The organic structure director is sandwiched by the inorganic layers and the shortest inter-layer distance is about 6.4 Å. In II the primary building units are linked into different six-membered rings which form a honeycomb-like layer. Two such layers are connected via Ag-S bonds of the AgS4 tetrahedra giving the final undulated double layer anion. The structure directing ethylenediamine cations are located in pairs between the layers and a sandwich-like arrangement of alternating anionic layers and organic cations is observed. The inter-layer separation is about 5.4 Å. Both compounds decompose in a more or less complex manner when heated in an argon atmosphere. The optical band gaps of about 1.9 eV for the two compounds proof the semiconducting behavior. For II the conductivity was measured with impedance spectroscopy and amounts to σ295K=7.6×10−7 Ω−1 cm−1. At 80 °C the conductivity is significantly larger by one order of magnitude.  相似文献   

5.
A new open-framework iron (III) phosphite |C4N3H14|[Fe3(HPO3)4F2(H2O)2] has been solvothermally synthesized by using diethylenetriamine (DETA) as the structure-directing agent. Single-crystal X-ray diffraction analysis reveals that the compound crystallizes in the monoclinic space group C2/c having unit cell parameters a=12.877(3) Å, b=12.170(2) Å, c=12.159(2) Å, β=93.99(3)°, V=1900.9(7) Å3, and Z=4 with R1=0.0447, wR2=0.0958. The complex structure consists of HPO3 pseudo-tetrahedra and {Fe3O14F2} trimer building units. The assembly of these building units generates 3D inorganic framework with intersecting 6-, 8-, and 10-ring channels. The DETA cations are located in the 10-ring channels linked by hydrogen bonds. The Mössbauer spectrum shows that there exhibit two crystallographically independent iron (III) atoms. And the magnetic investigation shows the presence of antiferromagnetic interactions. Further characterization of the title compound was performed using X-ray powder diffraction (XRD), infrared (IR) spectra, thermal gravimetric analyses (TGA), inductively coupled plasma (ICP) and elemental analyses.  相似文献   

6.
Reactions of Me5Al3[OC(C6H5)2C(C6H5)2O]2 (1) with alcohols ROH (R = Me, Et, tBu) in a 1:1 molar ratio afforded the compound Me2Al2[OC(C6H5)2C(C6H5)2O]2(C4H8O) (2) and a mixture of methylaluminum alkoxides. The alcohols acted as the factor formally eliminating a molecule of Me3Al (as a methylaluminum alkoxide) from compound 1. tBu3Al reacted with an equimolar amount of benzopinacol to form the monomeric complex tBuAl[OC(C6H5)2C(C6H5)2O](C4H8O) (3). Reactions of Me3Ga and Me3In with benzopinacol yielded trinuclear complexes Me5M3[OC(C6H5)2C(C6H5)2O]2 (4 (M = Ga), 5 (M = In)), isostructural to compound 1. In the presence of water and alcohols, compounds 4 and 5 underwent a decomposition reaction to benzopinacol and a mixture of metalloxanes and alkoxides. An unusual methylmethoxo indium benzopinacolate Me6In4[OC(C6H5)2C(C6H5)2O]2(OCH3)2 (6) was obtained in the reaction of benzopinacol with Me3In and Me2InOMe in a 1:1:1 molar ratio. Molecular structures of the compounds 3, 4 and 6 were determined by X-ray crystallography.  相似文献   

7.
Two new mixed organic-inorganic uranyl molybdates, (C6H14N2)3[(UO2)5(MoO4)8](H2O)4 (1) and (C2H10N2)[(UO2)(MoO4)2] (2), have been obtained by hydrothermal methods. The structure of 1 [triclinic, , Z=1, a=11.8557(9), b=11.8702(9), c=12.6746(9) Å, α=96.734(2)°, β=91.107(2)°, γ=110.193(2)°, V=1659.1(2) Å] has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1=0.058, which was calculated for the 5642 unique observed reflections (|Fo|?4σF). The structure contains topologically novel sheets of uranyl square bipyramids, uranyl pentagonal bipyramids, and MoO4 tetrahedra, with composition [(UO2)5(MoO4)8]6−, that are parallel to (−101). H2O groups and 1,4-diazabicyclo [2.2.2]-octane (DABCO) molecules are located in the interlayer, where they provide linkage of the sheets. The structure of 2 [triclinic, , Z=2, a=8.4004(4), b=11.2600(5), c=13.1239(6) Å, α=86.112(1)°, β=86.434(1)°, γ=76.544(1)°, V=1203.14(10) Å] has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1=0.043, which was calculated for 5491 unique observed reflections (|Fo|?4σF). The structure contains topologically novel sheets of uranyl pentagonal bipyramids and MoO4 tetrahedra, with composition [(UO2)(MoO4)2]2−, that are parallel to (110). Ethylenediamine molecules are located in the interlayer, where they provide linkage of the sheets. All known topologies of uranyl molybdate sheets of corner-sharing U and Mo polyhedra can be described by their nodal representations (representations as graphs in which U and Mo polyhedra are given as black and white vertices, respectively). Each topology can be derived from a simple black-and-white graph of six-connected black vertices and three-connected white vertices by deleting some of its segments and white vertices.  相似文献   

8.
Two new zinc phosphites [Zn2(HPO3)2(H2PO3)][C3H5N2] 1 and [Zn2(HPO3)3][C4H7N2]2·2H2O 2 have been hydrothermally synthesized templated by imidazole and 2-methylimidazole. Single-crystal X-ray diffraction analysis reveals that the two compounds have the similar inorganic framework structures, which both exhibit 2D double layer structures with double 12-membered rings. Due to the different space-filling effect of the guest molecules, the stacking mode of adjacent layers and the arrangement mode of the organic amines are distinct. In 1, the adjacent layers are stacked in an -ABAB- sequence and monoprotonated imidazole molecules sit in the middle of 12MR windows, while in 2, the layers are stacked in an -AAAA- pattern. Monoprotonated 2-methylimidazole molecules occupy two different sites, one inserts into 12MR and the other resides in the interlayer region. Crystal data for 1: triclinic, P-1, , , , α=114.71(3)°, β=92.78(3)°, γ=113.04(3)°, , Z=2; for 2: triclinic, P-1, , , , α=68.244(7)°, β=76.143(7)°, γ=63.113(6)°, , Z=2.  相似文献   

9.
A solvothermal reaction of ZnO, HCl, H3PO4, and N,N′(3-bisaminopropyl)-1,2-ethylenediamine (BAPEN) in diethyleneglycol at 160°C yields a new zinc chlorophosphate, [C8N4H26][Zn3Cl(HPO4)3(PO4)], I. The structure comprises ZnO4, ZnO3Cl, HPO4 and PO4 tetrahedral units connected through their vertices giving rise to a layered structure with 10-membered apertures. The position of the Zn and P atoms gives rise to double-four ring like building unit with one Zn missing. The fully protonated amine molecules occupy the inter-lamellar region and interacts with the framework through N-H?O hydrogen bonds. Crystal data: M=792.85, orthorhombic, space group=Pca21 (no. 29), a=9.8410(2), b=15.0912(2), c=16.1220(4) Å, V=2394.32(8) Å3, Z=4, ρcalc=2.199 g cm−3, μ(MoKα)=3.443 mm−1, R1=0.0520, wR2=0.1256 and S=1.054.  相似文献   

10.
[C4N2H12]1.5[Zn2(PO4)(HPO4)2]·H2O晶体的合成与表征   总被引:2,自引:0,他引:2       下载免费PDF全文
由于在电学、磁学、光学、吸附、离子交换和催化等领域具有潜在的应用价值,具有开放骨架结构的金属磷酸盐的合成一直受到人们的广泛关注.在这些磷酸盐微孔化合物中,磷酸锌晶体是拓扑结构最为丰富的一种.  相似文献   

11.
[C6H21N4][Sb9S14O] represents the first known oxo-thioantimonate with an organic ion acting as structure director. The compound crystallizes in the non-centrosymmetric space group Cmc21 with a=29.679(2), b=9.9798(6), , , Z=4. The structure contains the hitherto unknown [SbS2O] unit as a structural motif. The [SbS3] trigonal pyramids and [SbS2O] units are joined to form a 10-membered ring with large pores having a diameter of 7.7 Å×8.3 Å. The organic template molecule acts like a tetra-dentate ligand around the O atom of the [SbS2O] group. Depending on the value chosen for the Sb-S bond lengths, the material contains a 1-, 2- or 3-dimensional anion. The optical band gap of 2.03 eV demonstrates that the material is an optical semi-conductor. Upon heating, the compound decomposes in two steps yielding finally a mixture of Sb and Sb2S3. The 121Sb Mössbauer spectrum shows a relative large line width in accordance with the superposition of the five signals.  相似文献   

12.
The first indium sulfate coordination complex, (2,2′-bipy)[In2(OH)2(H2O)](SO4)2 (2,2′-bipy=2,2′-bipyridyl) was hydrothermally synthesized and characterized by single-crystal X-ray diffraction (XRD), the powder XRD, elemental analysis, inductively coupled plasma (ICP) analysis, thermogravimetric analysis (TGA), IR spectroscopy and fluorescent spectroscopy. It is noteworthy that this compound exhibits a novel two-dimensional layer structure, which is built up from two distinct motifs, a butlerite-type chain and a single 4-ring (S4R) unit. The adjacent layers are stably packed together and extended into three-dimensional supramolecular arrays via π-π stacking interactions of the 2,2′-bipy ligands. Additionally, this compound shows strong fluorescent property at room temperature, which may be assigned to ligand-centered π*-π transitions.  相似文献   

13.
A new vanadium(III) phosphite, (C4H8N2H4)0.5(C4H8N2H3)[V4(HPO3)7(H2O)3]1.5H2O, has been synthesized hydrothermally by using V2O5, H3PO3 as reactants, piperazine as the structure-directing agent. The as-synthesized product was characterized by powder X-ray diffraction, IR spectroscopy, inductively coupled plasma analysis, thermogravimetric analysis, and SQUID magnetometer. Single-crystal X-ray diffraction analysis shows that the title compound crystallized in the trigonal space group (No. 165) with the parameters: , , and Z=4. Its structure is built up by alternation of octahedral VO6 or VO5(H2O) and pseudo-pyramidal HPO3 units to form infinite 2D layers, and these layers are interconnected by sharing vertex-oxygen with octahedral VO6 units to generate a 3D open-framework structure with 12-membered ring channels in a and b directions, respectively, where there exist entrapped diprotonated and mono-protonated piperazine cations, and water molecules. Magnetic measurement indicates that paramagnetic behavior is observed down to 4 K.  相似文献   

14.
Introduction Boratecompounds,inwhichboronisboundonly tooxygen,areofconsiderablemineralogicalandindus trialimportance.Thesecompoundscontaininganionic componentscomposedofBO3andBO4groups,which maybelinkedtogetherbysharingoxygenatoms,can formisolatedringsand…  相似文献   

15.
IntroductionSulfide-based open-framework materials are in-triguing compounds.They possess very diverse and in-teresting structures,and exhibit potential applicationsas a newgeneration of molecular sieves with the proper-ties of semiconductor materials[1].…  相似文献   

16.
The first organically templated neodymium sulfate has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction analysis. [C2N2H10]1.5[Nd(SO4)3(H2O)]·2H2O crystallizes in the monoclinic space group P21/c with crystal data , , , β=104.399(5)°, , Z=4. Refinement gave R1[I>2σ(I)]=0.0471, and wR2[I>2σ(I)]=0.0899. The compound exhibits an infinite zigzag anionic layer structure, which consists of {Nd(SO4)3(H2O)}3− structural units connected together to form interesting eight-membered rings via corner-sharing and edge-sharing modes. The compound has the antiferromagnetic behavior and exhibits intense photoluminescence upon photo-excitation at 450 nm.  相似文献   

17.
A new chemical oxidant [N(4-C6H4Br)3][B(C6F5)4], was prepared and used to synthesize [Fe(C5H5)2][B(C6F5)4]. The crystal structure of [Fe(C5H5)2][B(C6F5)4] was determined.  相似文献   

18.
A new three-dimensional (3D) zincophosphite |Co(en)3| [Zn4(HPO3)5(H2PO3)] (1) has been solvothermally synthesized by using a racemic mixture of a chiral cobaltammine complex Co(en)3Cl3 as the structure-directing agent. Single-crystal X-ray diffraction analysis reveals that compound 1 crystallizes in the monoclinic space group P21/c (no. 14) with a=18.6180 (4) Å, b=8.7601(18) Å, c=17.4840(4) Å, β=93.42(3)°, V=2846.4(10) Å3, Z=4 with R1=0.0530. Its structure is built up from strict alternation of ZnO4 tetrahedra and HPO3 pseudo-tetrahedra, giving rise to a 3D inorganic framework with 4-, 6-, 8-, 10- and 12 MRs, and the metal complex molecules, both the Δ and Λ enantiomers, sit in 10-MRs channels. In addition, it is worth noting that left- and right-handed helical chains exist in the framework, which is induced by chiral metal complex Co(en)3Cl3 template molecules. Further characterization of compound 1 has been performed, including X-ray powder diffraction, ICP, CHN, IR and TG analyses.  相似文献   

19.
Five organic-inorganic hybrid gallium oxalate-phosphates, [Ga2(PO4)2(H2O)(C2O4)0.5](C3N2H12)0.5(H2O) (1), [Ga2(PO4)2(C2O4)0.5](C2N2H10)0.5(H2O) (2), [Ga2(PO4)2(C2O4)0.5](C3N2H12)0.5 (3), [Ga2(PO4)2(H2PO4)0.5(C2O4)0.5](C4N3H16)0.5 (H2O)1.5 (4) and [Ga2.5(PO4)2.5(H2O)1.5(C2O4)0.5](C4N3H15)0.5 (5), have been synthesized by using 1,3-diaminopropane, ethylenediamine and diethylene triamine as structure-directing agents under hydrothermal condition. The structures of 1-5 are based on Ga4(PO4)4(C2O4) building unit made up from Ga2O8(C2O4) oxalate-bridging dimer and alternating PO4 and GaO4 tetrahedral units. Compound 1 is layered structure where the building units link together in the same orientation. Corner sharing of these similar layers result in three-dimensional (3-D) structure 2. However, in compound 3, the building units arrange in a wave-like way to generate two types of eight member ring (8MR) channels. Both 4 and 5 contain the layers where the building units have an opposite orientation. Those layers are linked by H2PO4 group and Ga(PO4)(H2O)3 cluster, respectively, to form 3-D frameworks with 12MR large pore channels. Compounds 2-5 exhibit intersecting 3-D channels where the protoned amines are located.  相似文献   

20.
A new three-dimensional (3-D) zinc phosphite with Zn/P ratio of 4/5, [Ni(C6N2H14)2][Zn4(H2O)(HPO3)5] (1), has been prepared by using self-assembled nickel complexes as the structure-directing agents. Its structure is built up from strict alternation of ZnO4 tetrahedra and HPO3 pseudo-pyramids, resulting in an open framework with multi-directional intersecting 8-, 12- and 16-ring channels. The unique nickel complexes Ni(DACH)2 (DACH=1,2-diaminocyclohexane) only involving the cis-DACH acting as ligands are self-assembled under hydrothermal conditions, and act as the structure-directing agents (SDAs) to direct the formation of compound 1. Nickel complexes reside in the channels in a manner that the hydrophobic ends of the cis-DACH molecules exclusively protrude into the 16-ring pores and the amino groups closely interact with the charged inorganic framework through weak H-bonds. The interesting arrangements of nickel complexes imply a feasible approach to the design and synthesis of extra-large pore materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号