首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The perovskite-related layered structure of La2Ti2O7 has been studied at pressures up to 30 GPa using synchrotron radiation powder X-ray diffraction (XRD) and Raman scattering. The XRD results indicate a pronounced anisotropy for the compressibility of the monoclinic unit cell. The ratio of the relative compressibilities along the [100], [010] and [001] directions is ∼1:3:5. The greatest compressibility is along the [001] direction, perpendicular to the interlayer. A pressure-induced phase transition occurs at 16.7 GPa. Both Raman and XRD measurements reveal that the pressure-induced phase transition is reversible. The high-pressure phase has a close structural relation to the low-pressure monoclinic phase and the phase transition may be due to the tilting of TiO6 octahedra at high pressures.  相似文献   

2.
The tetragonal compound Bi2CuO4 was investigated at high pressures by using in situ Raman scattering and X-ray diffraction (XRD) methods. A pressure-induced structural transition started at 20 GPa and completed at ∼37 GPa was found. The high pressure phase is in orthorhombic symmetry. Raman and XRD measurements revealed that the above phase transition is reversible.  相似文献   

3.
A new four-layer Aurivillius phase Bi2SrNa2Nb4O15 has been synthesized by solid-state reaction of Bi2SrNb2O9 and NaNbO3 at 1100 °C. The detailed structure determination of Bi2SrNa2Nb4O15 performed by powder X-ray diffraction (XRD) shows that it crystallizes in the space group I4/mmm [a∼3.9021(1) Å, c∼40.7554(10) Å]. Protonated form of Bi2SrNa2Nb4O15 was obtained by the substitution of bismuth oxide sheets with protons via acid treatment. The conversion into the protonated forms was achieved easily using 6 M HCl at room temperature. Preservation of the structure of the perovskite-like slabs and contraction in the c-axis were confirmed by X-ray analysis. The compositions of the resulting products were determined to be H1.8[Sr0.8Bi0.2Na2Nb4O13] by X-ray fluorescence spectroscopy (XFS) and thermogravimetry.  相似文献   

4.
Structural changes in the layered compound γ-NaxCoO2 (x=0.74) are studied by in situ Raman scattering and energy-dispersive X-ray diffraction methods at pressures up to 41 GPa. The pressure dependence of the lattice parameters indicate that γ-NaxCoO2 has a strong anisotropic compressibility before 15 GPa and the unit cell is easily compressed between layers. The discontinuity of the lattice parameters and Raman observations reveal that a phase transition occurred at pressures between 10 and 12 GPa. The high-pressure phase has the same hexagonal symmetry and the phase transition may be due to the pressure-induced rearrangement of one of the Na cations in the unit cell.  相似文献   

5.
The structure of orthorhombic rare earth titanates of La2TiO5 and Nd2TiO5, where Ti cations are in five-fold coordination with oxygen, has been studied at high pressures by X-ray diffraction (XRD), Raman scattering measurements, and quantum mechanical calculations. Both XRD and Raman results indicated two pressure-induced phase transitions during the process. An orthorhombic super cell (a×b×2c) formed at a pressure between 6 and 10 GPa, and then transformed to a hexagonal high-pressure phase accompanied by partial decomposition. The hexagonal high-pressure phase is quenchable. Detailed structural analysis indicated that the five-coordinated TiO5 polyhedra remain during the formation of super cell, but the orthorhombic-to-hexagonal phase transition at high pressures is a reconstructive process, and the five-fold Ti-O coordination increased to more than 6. This phase transition sequence was verified by quantum mechanical calculations.  相似文献   

6.
A new oxide, Bi14Sr21Fe12O61, with a layered structure derived from the 2212 modulated type structure Bi2Sr3Fe2O9, was isolated. It crystallizes in the I2 space group, with the following parameters: a=16.58(3) Å, b=5.496(1) Å, c=35.27(2) Å and β=90.62°. The single crystal X-ray structure determination, coupled with electron microscopy, shows that this ferrite is the m=5 member of the [Bi2Sr3Fe2O9]m[Bi4Sr6Fe2O16] collapsed family. This new collapsed structure can be described as slices of 2212 structure of five bismuth polyhedra thick along , shifted with respect to each other and interconnected by means of [Bi4Sr6Fe2O16] slices. The latter are the place of numerous defects like iron or strontium for bismuth substitution; they can be correlated to intergrowth defects with other members of the family.  相似文献   

7.
The high-pressure phase of iridium-based compound Ba3CaIr2O9 was synthesized using high-pressure sintering. Being different from the distorted hexagonal BaTiO3 structure of the ambient Ba3CaIr2O9, the high-pressure phase crystals into the 1:2 B-site-ordered perovskite structure with the space group P-3m1 (Z=1). Through fitting the X-ray powder diffraction (XRD) data with Rietveld analysis, in which the obtained Rp, Rwp, and Rexp factors are 7.49%, 11.4%, and 4.82%, respectively, the lattice parameters are a=5.8296(1) Å and c=7.1659(2) Å. The atomic coordinates and the main interatomic distances and bond angles were also obtained. The relationship of electrical resistivity versus temperature shows that the high-pressure phase of Ba3CaIr2O9 is a semiconductor in the temperature range of 5-300 K. The measurement of temperature dependence of magnetic susceptibility indicates that it is paramagnetic.  相似文献   

8.
The high pressure behavior of aluminum tungstate [Al2(WO4)3] has been investigated up to ∼18 GPa with the help of Raman scattering studies. Our results confirm the recent observations of two reversible phase transitions below 3 GPa. In addition, we find that this compound undergoes two more phase transitions at ∼5.3 and ∼6 GPa before transforming irreversibly to an amorphous phase at ∼14 GPa.  相似文献   

9.
The high-pressure behavior of Y2(WO4)3 has been investigated at room temperature by in situ X-ray diffraction and Raman scattering measurements. Both the studies show that beyond ∼3 GPa, this compound smoothly transforms from the ambient orthorhombic phase to a disordered phase. The structural modifications are found to be reversible up to ∼4 GPa but become irreversible at higher pressures. Low pressures of transformation imply that these changes are intrinsic and not due to non-hydrostatic stresses. In addition, the correlation between the stability range of orthorhombic phase and counter cation size supports that this compound has a large field of negative thermal expansion in this family of compounds.  相似文献   

10.
The structure of K-bearing tantalate pyrochlore (K2-xGdx)Ta2O6+x(x∼0.4) was studied at high pressures using in situ X-ray diffraction and Raman scattering methods. Experimental results indicated that (K2-xGdx)Ta2O6+x(x∼0.4) retains the pyrochlore structure up to 40 GPa, but partial amorphization occurred at pressures above 23 GPa. The amorphous phase was also confirmed in the quenched sample by means of transmission electron microscopy. The tantalate pyrochlore lattice is more stable than pyrochlore compounds in other systems, such as rare earth titanates, zirconates and stannates. The structural stability of pyrochlore tantalate may be mainly related to the size ratio of cations on the 16d and 16c sites in the lattice.  相似文献   

11.
La, Nd, Sm, and Dy-doped Sr2Bi4Ti5O18 (SBTi) ceramic samples have been prepared by the solid-state reaction method. The X-ray diffraction reveals that all of the ceramic samples are single phase compounds. Their remnant polarization (2Pr) increases at first, and then decreases with the increase of doping content. When doping content is 0.01, Sm and Dy-doped SBTi samples exhibit the maximum 2Pr of 18.2 and 20.1 μC/cm2, respectively. While La and Nd-doped SBTi samples display the maximum 2Pr value of 18.4 and 19.1 μC/cm2 with doping content of 0.05 and 0.10, respectively. The ferroelectric properties of Sr2Bi4−xLnxTi5O18 are found to be dominated by the competition of the decrease of oxygen vacancy concentration and the relief of structural distortion.  相似文献   

12.
A high-pressure Raman scattering study of the tungstate Al2(WO4)3 is presented. This study showed the onset of two reversible phase transitions at 0.28±0.07 and 2.8±0.1 GPa. The pressure evolution of Raman bands provides strong evidences that both the transitions involve rotations/tilts of nearly rigid tungstate tetrahedra and that the structure of the stable phase in the 0.28-2.8 GPa range may be the same as the structure of the ambient pressure, low-temperature monoclinic (C2h5) ferroelastic phase of Al2(WO4)3.  相似文献   

13.
Two new compounds Ca0.5Bi3V2O10 and Sr0.5Bi3V2O10 have been synthesized in the ternary system: MO-Bi2O3-V2O5 system (M=M2+). The crystal structure of Sr0.5Bi3V2O10 has been determined from single crystal X-ray diffraction data, space group and Z=2, with cell parameters a=7.1453(3) Å, b=7.8921(3) Å, c=9.3297(3) Å, α=106.444(2)°, β=94.088(2)°, γ=112.445(2)°, V=456.72(4) Å3. Ca0.5Bi3V2O10 is isostructural with Sr0.5Bi3V2O10, with, a=7.0810(2) Å, b=7.8447(2) Å, c=9.3607(2) Å, α=106.202(1)°, β=94.572(1)°, γ=112.659(1)°, V=450.38(2) Å3 and its structure has been refined by Rietveld method using powder X-ray data. The crystal structure consists of infinite chains of (Bi2O2) along c-axis formed by linkage of BiO8 and BiO6 polyhedra interconnected by MO8 polyhedra forming 2D layers in ac plane. The vanadate tetrahedra are sandwiched between these layers. Conductivity measurements give a maximum conductivity value of 4.54×10−5 and 3.63×10−5 S cm−1 for Ca0.5Bi3V2O10 and Sr0.5Bi3V2O10, respectively at 725 °C.  相似文献   

14.
Phase behavior of a synthetic orthoenstatite in a diamond-anvil cell has been studied up to ∼22 GPa by using Raman spectroscopy at room temperature. Under quasi-hydrostatic conditions, orthoenstatite undergoes a reversible phase transformation at an apparent transition pressure of ∼10 GPa for compression and ∼9.5 GPa for decompression. The 3d transition-metal cations, e.g., Fe2+ and Ni2+, show only a minor effect on the transition pressure within 10 wt% of addition. All the Raman frequencies in both orthoenstatite and its high-pressure phase increase monotonically with increasing pressure. The amount of forward or backward transition is fixed at a given pressure and forms a hysteresis loop in the transition %-pressure plan. The type for the present metastable phase transition is inferred to be of first order and the high-pressure polymorph may be the intermediate between orthoenstatite and the high-pressure clinoenstatite (i.e., the high-P C2/c phase). A mechanism based on Mnyukh's edgewise model of interface motion has been suggested to account for the observed phenomena.  相似文献   

15.
The high pressure behavior of U2O(PO4)2 has been investigated with the help of Raman scattering and X-ray diffraction measurements up to ∼14 and 6.5 GPa, respectively. The observed changes in the Raman spectra as well as the X-ray diffraction patterns suggest that U2O(PO4)2 undergoes a phase transition at ∼6 GPa to a mixture of a disordered ambient pressure phase and a new high pressure phase. The new phase resembles the triclinic mixed-valence phase of uranium orthophosphate (U(UO2)(PO4)2). On release of pressure the initial phase is not retrieved.  相似文献   

16.
The crystal structure of the new Bi∼3Cd∼3.72Co∼1.28O5(PO4)3 has been refined from single crystal XRD data, R1=5.37%, space group Abmm, a=11.5322(28) Å, b=5.4760(13) Å, c=23.2446(56) Å, Z=4. Compared to Bi∼1.2M∼1.2O1.5(PO4) and Bi∼6.2Cu∼6.2O8(PO4)5, this compound is an additional example of disordered Bi3+/M2+ oxyphosphate and is well described from the arrangement of double [Bi4Cd4O6]8+ (=D) and triple [Bi2Cd3.44Co0.56O4]6+ (=T) polycationic ribbons formed of edge-sharing O(Bi,M)4 tetrahedra surrounded by PO4 groups. According to the nomenclature defined in this work, the sequence is TT/DtDt, where t stands for the tunnels created by PO4 between two subsequent double ribbons and occupied by Co2+. The HREM study allows a clear visualization of the announced sequence by comparison with the refined crystal structure. The Bi3+/M2+ statistic disorder at the edges of T and D entities is responsible for the PO4 multi-configuration disorder around a central P atom. Infrared spectroscopy and neutron diffraction of similar compounds (without the highly absorbing Cadmium) even suggests the long range ordering loss for phosphates. Therefore, electron diffraction shows the existence of a modulation vector q*=1/2a*+(1/3+ε)b* which pictures cationic ordering in the (001) plane, at the crystallite scale. This ordering is largely lost at the single crystal scale. The existence of mixed Bi3+/M2+ positions also enables a partial filling of the tunnels by Co2+ and yields a composition range checked by solid state reaction. The title compound can be prepared as a single phase and also the M=Zn2+ term can be obtained in a biphasic mixture. For M=Cu2+, a monoclinic distortion has been evidenced from XRD and HREM patterns but surprisingly, the orthorhombic ideal form can also be obtained in similar conditions.  相似文献   

17.
New phases Sr8ARe3Cu4O24 (A=Sr,Ca) were discovered under high-pressure/high-temperature condition. X-ray powder diffraction and electron diffraction studies for these phases indicated that they have an ordered perovskite-type structure with cubic lattices of ∼8 Å. They showed ferromagnetism at room temperature when they were synthesized under high-oxygen-pressure condition. The Ca-containing phase has a very high Tc of 440 K with a spontaneous magnetization of ∼1 μB/f.u.  相似文献   

18.
Phase transitions in MgAl2O4 were examined at 21-27 GPa and 1400-2500 °C using a multianvil apparatus. A mixture of MgO and Al2O3 corundum that are high-pressure dissociation products of MgAl2O4 spinel combines into calcium-ferrite type MgAl2O4 at 26-27 GPa and 1400-2000 °C. At temperature above 2000 °C at pressure below 25.5 GPa, a mixture of Al2O3 corundum and a new phase with Mg2Al2O5 composition is stable. The transition boundary between the two fields has a strongly negative pressure-temperature slope. Structure analysis and Rietveld refinement on the basis of the powder X-ray diffraction profile of the Mg2Al2O5 phase indicated that the phase represented a new structure type with orthorhombic symmetry (Pbam), and the lattice parameters were determined as a=9.3710(6) Å, b=12.1952(6) Å, c=2.7916(2) Å, V=319.03(3) Å3, Z=4. The structure consists of edge-sharing and corner-sharing (Mg, Al)O6 octahedra, and contains chains of edge-sharing octahedra running along the c-axis. A part of Mg atoms are accommodated in six-coordinated trigonal prism sites in tunnels surrounded by the chains of edge-sharing (Mg, Al)O6 octahedra. The structure is related with that of ludwigite (Mg, Fe2+)2(Fe3+, Al)(BO3)O2. The molar volume of the Mg2Al2O5 phase is smaller by 0.18% than sum of molar volumes of 2MgO and Al2O3 corundum. High-pressure dissociation to the mixture of corundum-type phase and the phase with ludwigite-related structure has been found only in MgAl2O4 among various A2+B3+2O4 compounds.  相似文献   

19.
This work presents a comprehensive study on phase transitions in LiAlO2 system at high pressures and temperatures (0.5-5.0 GPa and 300-1873 K, respectively), as well as the phase stability for polymeric phases of LiAlO2 in the studied P-T space by X-ray diffraction (XRD). Besides the previously described polymorphic hexagonal α-phase, orthorhombic β-phase and tetragonal δ-phase, a possible new phase of LiAlO2 was observed after the tetragonal γ-LiAlO2 sample was treated at 5.0 GPa and 389 K. The stable regimes of these high-pressure phases were defined through the observation of coexistence points of the polymeric phases. Our results revealed that LiAlO2 could experience structural phase transitions from γ-LiAlO2 to its polymorphs at lower pressures and temperatures compared to the reported results. Hexagonal α-LiAlO2 with highly (003) preferential orientation was prepared at 5.0 GPa and 1873 K.  相似文献   

20.
The n=3 Aurivillius material Bi2Sr2Nb2.5Fe0.5O12 is investigated and combined structural refinements using neutron powder diffraction (NPD) and X-ray powder diffraction data (XRPD) data reveal that the material adopts a disordered, tetragonal (I4/mmm) structure at temperatures down to 2 K. Significant ordering of Fe3+ and Nb5+ over the two B sites is observed and possible driving forces for this ordering are discussed. Some disorder of Sr2+ and Bi3+ over the M and A sites is found and is consistent with relieving strain due to size mismatch. Highly anisotropic thermal parameters for some oxygen sites suggest that the local structure may be slightly distorted with some rotation of the octahedra. Magnetic measurements show that the material behaves as a Curie-Weiss paramagnet in the temperature range studied with no evidence of any long-range magnetic interactions. Solid solutions including Bi3−xSrxNb2FeO12, Bi2Sr2−xLaxNb2FeO12 and Bi2Sr2Nb3−xFexO12 were investigated but single-phase materials were only successfully synthesised for a narrow composition range in the Bi2Sr2Nb3−xFexO12 system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号