首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Titanium-doped single crystals (cTi=0-2×1020 atoms cm−3) were prepared from the elements Sb, Ti, and Te of 5 N purity by a modified Bridgman method. The obtained crystals were characterized by measurements of the temperature dependence of the electrical resistivity, Hall coefficient, Seebeck coefficient and thermal conductivity in the temperature range of 3-300 K. It was observed that with an increasing Ti content in the samples the electrical resistivity, the Hall coefficient and the Seebeck coefficient increase. This means that the incorporation of Ti atoms into the Sb2Te3 crystal structure results in a decrease in the concentration of holes in the doped crystals. For the explanation of the observed effect a model of defects in the crystals is proposed. The data of the lattice thermal conductivity were fitted well assuming that phonons scatter on boundaries, point defects, charge carriers, and other phonons.  相似文献   

2.
Single crystals of SrAl2Si2 were synthesized by reaction of the elements in an aluminum flux at 1000 °C. SrAl2Si2 is isostructural to CaAl2Si2 and crystallizes in the hexagonal space group P-3m1 (90 K, a=4.1834 (2), c=7.4104 (2) Å, Z=1, R1=0.0156, wR2=0.0308). Thermal analysis shows that the compound melts at ∼1020 °C. Low-temperature resistivity on single crystals along the c-axis shows metallic behavior with room temperature resistivity value of ∼7.5 mΩ cm. High-temperature Seebeck, resistivity, and thermal conductivity measurements were made on hot-pressed pellets. The Seebeck coefficient shows negative values in entire temperature range decreasing from ∼−78 μV K−1 at room temperature to −34 μV K−1 at 1173 K. Seebeck coefficients are negative indicating n-type behavior; however, the temperature dependence is consistent with contribution from minority p-type carriers as well. The lattice contribution to the thermal conductivity is higher than for clathrate structures containing Al and Si, approximately 50 mW cm−1 K, and contributes to the overall low zT for this compound.  相似文献   

3.
Bi2Te3 films have been grown by constant and pulsed electrochemical deposition. The pulsed deposition was carried out by alternating between a constant potential (potentiostatic mode) and an open circuit potential (galvanostatic mode, where current density is fixed at 0 mA/cm2). The Harris texture analysis was performed to determine the degree of preferred orientation. The results showed that the films were strongly oriented along (1?1?0) direction. The morphology and compositions of the films were then analyzed. Finally, their Seebeck coefficient and electrical resistivity were measured and used to determine the thermoelectric Power Factor of the films for a temperature range between 57 and 107 °C.  相似文献   

4.
The comprehensive study of conductivity σ, Hall coefficient RH and Seebeck coefficient S has been carried out on high-quality single crystals of CeB6 in a wide range of temperatures 1.8-300 K. An anomalous behavior of all transport characteristics (σ, RH, S) was found for the first time in the vicinity of T*≈80 K. The strong decrease of conductivity σ as well as the unusual asymptotic behavior of Seebeck coefficient S(T)∼−ln T observed below T* allowed us to conclude in favor of crossover between different regimes of charge transport in CeB6. The pronounced change of Hall mobility μH, which diminishes from the maximum value of 20 cm2/(V s) at T* to the values of ∼6 cm2/(V s) at T∼10 K, seems to be attributed to the strong enhancement of charge carriers scattering due to fast spin fluctuations on Ce-sites. The low-temperature anomalies of the charge transport characteristics are compared with the predictions of the Kondo-lattice model.  相似文献   

5.
《Solid State Sciences》2012,14(10):1496-1502
The magnetization M(T,H), specific heat Cp(T,H), electrical resistivity ρ(T), magnetoresistance MR(T,H), thermal conductivity κ(T) and thermopower S(T) measurements were performed on the antiferromagnetic compound Ce5Ni2Si3 with the Néel temperature TN = 5.7 K. The estimated effective moment μeff is close to the free ion value of Ce in its trivalent state. The negative sign of the paramagnetic Curie temperature θp indicate the antiferromagnetic nature of the magnetic ordering. The variation of magnetic resistivity ρmag with temperature in Ce5Ni2Si3 can be explained by a competition of the crystal electric field (CEF) splitting, the Kondo effect and the magnetic order. Based on the thermopower and employing a simple single-ion Kondo model the Kondo temperature have been estimated. Magnetocaloric effect is small but shows a sign change, which may be caused by a metamagnetic behavior.  相似文献   

6.
The title compound was prepared as single crystals using an aluminum flux technique. Single crystal and powder X-ray diffraction indicate that this composition crystallizes in the clathrate type-I structure, space group Pm3?n. Electron microprobe characterization indicates the composition to be Ba8−ySryAl14.2(2)Si31.8(2) (0.77<y<1.3). Single-crystal X-ray diffraction data (90 and 12 K) were refined with the Al content fixed at the microprobe value (12 K data: R1=0.0233, wR2=0.0441) on a crystal of compositions Ba. The Sr atom preferentially occupies the 2a position; mixed Al/Si occupancy was found on all framework sites. These refinements are consistent with a fully occupied framework and nearly fully occupied cation guest sites as found by microprobe analysis. Temperature dependent electrical resistivity and thermal conductivity have been measured from room temperature to 1200 K on a hot-pressed pellet. Electrical resistivity reveals metallic behavior. The negative Seebeck coefficient indicates transport processes dominated by electrons as carriers. Thermal conductivity is between 22 and 25 mW/cm K. The sample shows n-type conductivity with a maximum figure of merit, zT of 0.3 at 1200 K. A single parabolic band model predicts a five-fold increase in zT at 800 K if carrier concentration is lowered.  相似文献   

7.
The performance of the thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT=S2σT/K, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature and K is the thermal conductivity. ZT can be increased by increasing S, increasing σ, or decreasing K. We have prepared the thermoelectric generator device of SiO2/SiO2+Ge multilayer superlattice films using the ion beam assisted deposition (IBAD). The 5 MeV Si ion bombardments have been performed using the AAMU Pelletron ion beam accelerator at five different fluences to make quantum structures (nanodots and/or nanoclusters) in the multilayer superlattice thin films to decrease the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and cross plane electrical conductivity. To characterize the thermoelectric generator devices before and after MeV Si ions bombardments at the different fluences we have measured the cross-plane Seebeck coefficient, the cross-plane electrical conductivity, and the cross-plane thermal conductivity, Raman spectra to get some information about the sample structure and bond structures among the used elements in the superlattice thin film systems.  相似文献   

8.
Granular Ag-added La0.7Ca0.3MnO3 (LCMO) samples were prepared by a sol-gel chemical route. Significant enhancements in Curie temperature (TC), metal−insulator transition (Tp) and magnetoresistance (MR) effects near room temperature are observed in as-obtained samples. 10 wt% addition of Ag in LCMO causes TC shift from 272 to 290 K, Tp boost up for more than 100 K and resistivity decrease by more than 3 orders of magnitude. X-ray diffraction patterns, thermal analysis and energy dispersive analysis of X-rays evidently show the existence of metal silver in LCMO matrices. High-resolution electron microscopy illustrates a well crystallization for LCMO grains in existence of Ag. It is argued that improved grain boundary effect and better crystallization caused by Ag addition are responsible for the enhancements.  相似文献   

9.
Thermoelectric properties of polycrystalline La1−xSrxCoO3, where Sr2+ is substituted in La3+ site in perovskite-type LaCoO3, have been investigated. Sr-doping increases the electrical conductivity (σ) of La1−xSrxCoO3, and also decreases the Seebeck coefficient (S) for 0.01?x?0.40. A Hall coefficient measurement reveals that the increase in electrical conductivity arises from increases in both carrier concentration and the Hall mobility. The decrease in the Seebeck coefficient is caused by a decrease in carrier effective mass as well as increase in carrier concentration. The highest power factor (σS2) is 3.7×10−4 W m−1 K−2 at 250 K for x=0.10. The thermal conductivity (κ) is about 2 W m−1 K−1 at 300 K for 0?x?0.04, and increases for x?0.05 because of an increase in heat transport by conductive carrier. The thermoelectric properties of La1−xSrxCoO3 are improved by Sr-doping, and the figure of merit (Z=σS2 κ−1) reaches 1.6×10−4 K−1 for x=0.06 at 300 K (ZT=0.048). For heavily Sr-doped samples, the thermoelectric properties diminish mainly because of the decrease in the Seebeck coefficient and the increase in thermal conductivity.  相似文献   

10.
The structural and transport properties (resistivity, thermopower and Hall effect), specific heat and thermal conductivity have been measured for GaN nanocrystalline ceramic prepared by hot pressing. It was found that the temperature dependence of resistivity in temperature range 10-300 K shows the very low activation energy, which is ascribed to the shallow donor doping originating in amorphous phase of sample. The major charge carriers are electrons, what is indicated by negative sign of Hall constant and Seebeck coefficient. The thermopower attains large values (−58 μV/K at 300 K) and was characterized by linear temperature dependence which suggests the diffusion as a major contribution to Seebeck effect. The high electron concentration of 1.3×1019 cm−3 and high electronic specific heat coefficient determined to be 2.4 mJ/molK2 allow to conclude that GaN ceramic demonstrates the semimetallic-like behavior accompanied by very small mobility of electrons (∼0.1 cm2/V s) which is responsible for its high resistivity. A low heat conductivity of GaN ceramics is associated with partial amorphous phase of GaN grains due to high pressure sintering.  相似文献   

11.
The calcium cobalt oxide CaCo2O4 was synthesized for the first time and characterized from a powder X-ray diffraction study, measuring magnetic susceptibility, specific heat, electrical resistivity, and thermoelectric power. CaCo2O4 crystallizes in the CaFe2O4 (calcium ferrite)-type structure, consisting of an edge- and corner-shared CoO6 octahedral network. The structure of CaCo2O4 belongs to an orthorhombic system (space group: Pnma) with lattice parameters, a=8.789(2) Å, b=2.9006(7) Å and c=10.282(3) Å. Curie-Weiss-like behavior in magnetic susceptibility with the nearly trivalent cobalt low-spin state (Co3+, 3d, S=0), semiconductor-like temperature dependence of resistivity (ρ=3×10−1 Ω cm at 380 K) with dominant hopping conduction at low temperature, metallic-temperature-dependent large thermoelectric power (Seebeck coefficient: S=+147 μV/K at 380 K), and Schottky-type specific heat with a small Sommerfeld constant (γ=4.48(7) mJ/Co mol K2), were observed. These results suggest that the compound possesses a metallic electronic state with a small density of states at the Fermi level. The doped holes are localized at low temperatures due to disorder in the crystal. The carriers probably originate from slight off-stoichiometry of the phase. It was also found that S tends to increase even more beyond 380 K. The large S is possibly attributed to residual spin entropy and orbital degeneracy coupled with charges by strong electron correlation in the cobalt oxides.  相似文献   

12.
The heat capacity and the heat content of bismuth niobate BiNbO4 and bismuth tantalate BiTaO4 were measured by the relaxation method and Calvet-type heat flux calorimetry. The temperature dependencies of the heat capacities in the form Cpm=128.628+0.03340 T−1991055/T2+136273131/T3 (J K-1 mol-1) and 133.594+0.02539 T−2734386/T2+235597393/T3 (J K-1 mol-1) were derived for BiNbO4 and BiTaO4, respectively, by the least-squares method from the experimental data. Furthermore, the standard molar entropies at 298.15 K Sm(BiNbO4)=147.86 J K-1 mol-1 and Sm(BiTaO4)=149.11 J K-1 mol-1 were assessed from the low temperature heat capacity measurements. To complete a set of thermodynamic data of these mixed oxides an attempt was made to estimate the values of the heat of formation from the constituent binary oxides.  相似文献   

13.
By dynamic calorimetry the temperature dependence of heat capacity for two-dimensional (2D) polymerized tetragonal phase of C60 has been determined over the 300-650 K range at standard pressure mainly with an uncertainty ±1.5%. In the range 490-550 K, an irreversible endothermic transition of the phase, caused by the depolymerization of the polymer, has been found and characterized. Based on the experimental data obtained and literature information, the thermodynamic functions of 2D polymerized tetragonal phase of C60, namely, the heat capacity C°p(T), enthalpy H°(T)−H°(0), entropy S°(T), and Gibbs function G°(T)−H°(0), have been calculated over the range from T→0 to 490 K. From 150 to 330 K in an adiabatic vacuum calorimeter and between 330 and 650 K in a dynamic calorimeter the thermodynamic properties of the depolymerization products have been examined and compared with the corresponding data for the monomeric phase C60.  相似文献   

14.
Semiconducting copper sulphide (Cu2S) thin films have been deposited on various substrates (SnO2:F/glass, glass) by the simple and economical chemical bath deposition technique. The depositions were carried out during a deposition time of about 32.5 min in the pH range of 9.4 to 11. The synthesized Cu2S thin films were characterized using various techniques without any annealing treatment. X-ray diffraction study shows that Cu2S films exhibit the best crystallinity for pH = 10.2. For this pH value, Auger electron spectroscopy investigations show that Cu2S thin films grown on an SnO2/glass substrate exhibit stochiometric composition with [Cu]/[S] concentrations ratio equal to 2.02. Using the Kelvin method, the work function difference (ФmaterialФprobe) for the Cu2S films deposited on SnO2/glass substrates at the optimum pH value was found to be equal to 145 meV. Hall measurements confirm the p-type electrical conductivity of the obtained films. The electrical resistivity was of the order of 3.85 × 10−4 Ω-cm. The transmission and reflection coefficients vary in the range of [35–60] % and [5–15] % respectively, in the visible range, and the band gap energy is about 2.37 eV.  相似文献   

15.
The physical properties including magnetic susceptibility, specific heat, and electrical resistivity of single crystals are reported for the compound CePd1+xAl6−x (x=0.5) which crystallizes in the tetragonal SrAu2Ga5-type structure (space group P4/mmm). The compound was grown from an excess of molten Al flux from the respective elements and the crystal structure was established from single-crystal X-ray diffraction. Anomalies in the low temperature specific heat Cp(T) and electrical resistivity ρ(T) show that the compound undergoes ferromagnetic order at TC=2.8 K. In the ordered state, CePd1.5Al5.5 displays heavy fermion behavior with a Sommerfeld coefficient of ca. 500 mJ/mol-K2.  相似文献   

16.
The temperature dependence of the paramagnetic susceptibility χm(T) taken in 2500 Oe, the resistivity ρ(T), and the thermoelectric power α(T) of DyBaCo2O5+x, which has Ba and Dy ordered into alternate (001) planes of an oxygen-deficient perovskite, have revealed a phase segregation in the compositional range 0.3?x<0.5. Orthorhombic DyBaCo2O5.51 has, in addition, oxygen vacancies ordered into alternate rows of the DyO0.51 (001) planes; a cold-pressed polycrystalline sample exhibits a first-order insulator-metal transition at TIM=320 K, a Curie temperature TC=300 K, and a broadened metamagnetic transition temperature TM≈265 K in 2500 Oe. A ferromagnetic M-H hysteresis curve fails to saturate at 5 T, and a minority ferromagnetic phase below TM has a volume fraction that decreases with decreasing temperature, vanishing below 50 K. Oxygen vacancies in the DyBaCo2O5.5 phase suppress the metallic state; interstitial oxygen does not. A thermoelectric power α(T)>0 of DyBaCo2O5.51 changing continuously across TIM is interpreted to manifest a metallic minority phase crossing a percolation threshold; α(T) also provides evidence for a progressive excitation of higher-spin Co(III) with increasing temperature from below 50 K to above TIM. A previous model of the RBaCo2O5.5 phase is extended to account for the Ising spin configuration below TC, the magnetic order in the presence of higher-spin octahedral-site Co(III), and the α(T) data.  相似文献   

17.
The effect of Ti and Ni substitution in LaCoO3−δ was investigated by means of electrical resistivity and Seebeck coefficient properties in a broad temperature range. The studied compounds crystallize in a rhombohedral crystal structure within the whole substitution range. The Seebeck coefficient of most of the studied compounds is positive indicating predominant hole-type charge carriers. The electrical resistivity decreases with increasing temperature for all compositions. Increasing the Ni content results in a decrease of the electrical resistivity, while the resistivity increases with increasing Ti content. The power factor, PF, for the Ni substituted samples is PF=1.42×10−4 W/m2 K for x=0.10 at and decreases with temperature. The LaCo1−xTixOδ compounds reveal an enhancement of the power factor with increasing temperature. Ti substitution leads to a higher power factor compared to that of Ni substitution at .  相似文献   

18.
Large samples (6-8 g) of Yb11Sb10 and Ca11Sb10 have been synthesized using a high-temperature (1275-1375 K) flux method. These compounds are isostructural to Ho11Ge10, crystallizing in the body-centered, tetragonal unit cell, space group I4/mmm, with Z=4. The structure consists of antimony dumbbells and squares, reminiscent of Zn4Sb3 and filled Skutterudite (e.g., LaFe4Sb12) structures. In addition, these structures can be considered Zintl compounds; valence precise semiconductors with ionic contributions to the bonding. Differential scanning calorimetry (DSC), thermogravimetry (TG), resistivity (ρ), Seebeck coefficient (α), thermal conductivity (κ), and thermoelectric figure of merit (zT) from room temperature to at minimum 975 K are presented for A11Sb10 (A=Yb, Ca). DSC/TG were measured to 1400 K and reveal the stability of these compounds to ∼1200 K. Both A11Sb10 (A=Yb, Ca) materials exhibit remarkably low lattice thermal conductivity (∼10 mW/cm K for both Yb11Sb10 and Ca11Sb10) that can be attributed to the complex crystal structure. Yb11Sb10 is a poor metal with relatively low resistivity (1.4 mΩ cm at 300 K), while Ca11Sb10 is a semiconductor suggesting that a gradual metal-insulator transition may be possible from a Ca11−xYbxSb10 solid solution. The low values and the temperature dependence of the Seebeck coefficients for both compounds suggest that bipolar conduction produces a compensated Seebeck coefficient and consequently a low zT.  相似文献   

19.
The crystal structure of the Zr1−xYxNiSn half-Heusler solid solutions is synthesized and their crystal structure is determined. Electrical resistivity and thermoelectric Seebeck coefficient are measured in the 80-380 K temperature range, whereas magnetic susceptibility is measured at 290 K. It is established that substitution of Zr host atoms by Y in the ZrNiSn intermetallic semiconductor is equivalent to doping by acceptor impurities. Self-consistent ab initio calculations, based on the full potential local orbital (FPLO) minimum basis method, are performed to investigate the electronic and thermoelectric properties of these alloys. Spin polarized within the framework of the coherent potential approximation (CPA) are included.  相似文献   

20.
Ln3Co4Sn13 (Ln=La, Ce) have been synthesized by flux growth and characterized by single crystal X-ray diffraction. These compounds adopt the Yb3Rh4Sn13-type structure and crystallize in the cubic space group (No. 223) with Z=2. Lattice parameters at 298 K are , , and , for the La and Ce analogues, respectively. The crystal structure consists of an Sn-centered icosahedron at the origin of the unit cell, which shares faces with eight Co trigonal prisms and 12 Ln-centered cuboctahedra. Magnetization data at 0.1 T show paramagnetic behavior down to 1.8 K for Ce3Co4Sn13, with per Ce3+, while conventional type II superconductivity appears below 2.85 K in the La compound. Electrical resistivity and specific heat data for the La compound show a corresponding sharp superconducting transition at Tc∼2.85 K. The entropy and resistivity data for Ce3Co4Sn13 show the existence of the Kondo effect with a complicated semiconducting-like behavior in the resistivity data. In addition, a large enhanced specific heat coefficient at low T with a low magnetic transition temperature suggests a heavy-fermionic character for the Ce compound. Herein, the structure and physical properties of Ln3Co4Sn13 (Ln=La, Ce) are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号