首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new borate, Cs2Al2B2O7, was synthesized by solid-state reaction. It crystallizes in the monoclinic space group P21/c with a=6.719(1) Å, b=7.121(1) Å, c=9.626(3) Å, β=115.3(1)°, and Z=2. In the structure, two AlO4 tetrahedra and two BO3 planar triangles are connected alternately by corner-sharing to from nearly planar [Al2B2O10] rings, which are further linked via common O1 atom to generate layers in the bc plane. These layers then share the O3 atoms lying on a center of inversion to form a three-dimensional framework with Cs atoms residing in the channels. The IR spectrum confirms the presence of both BO3 and AlO4 groups and the UV-vis-IR diffuse reflectance spectrum indicates a band gap of about 4.13(2) eV.  相似文献   

2.
Lithium aluminum silicate (LAS) glass of composition (mol%) 20.4Li2O-4.0Al2O3-68.6SiO2-3.0K2O-2.6B2O3-0.5P2O5-0.9TiO2 was prepared by melt quenching. The glass was then nucleated and crystallized based on differential thermal analysis (DTA) data and was characterized by 29Si, 31P, 11B and 27Al MAS-NMR. XRD and 29Si NMR showed that lithium metasilicate (Li2SiO3) is the first phase to c form followed by cristobalite (SiO2) and lithium disilicate (Li2Si2O5). 29Si MAS-NMR revealed a change in the network structure already for the glasses nucleated at 550 °C. Since crystalline Li3PO4, as observed by 31P MAS-NMR, forms concurrently with the silicate phases, we conclude that crystalline Li3PO4 does not act as a nucleating agent for lithium silicate phases. Moreover, 31P NMR indicates the formation of M-PO4 (M=B, Al or Ti) complexes. The presence of BO3 and BO4 structural units in all the glass/glass-ceramic samples is revealed through 11B MAS-NMR. B remains in the residual glass and the crystallization of silicate phases causes a reduction in the number of alkali ions available for charge compensation. As a result, the number of trigonally coordinated B (BO3) increases at the expense of tetrahedrally coordinated B (BO4). The 27Al MAS-NMR spectra indicate the presence of tetrahedrally coordinated Al species, which are only slightly perturbed by the crystallization.  相似文献   

3.
A new compound, CuZrTiO5, was synthesized as strongly pleochroic green crystals from the oxides between 995 and 1010 °C, 1 atm. Its crystal structure was determined by single crystal XRD, resulting in R (F2>2σ(F2))=0.032 and wR (all data)=0.079). CuZrTiO5 is orthorhombic, space group P212121, a=3.5871(3) Å, b=6.6968(4) Å, c=14.6679(9) Å, V=352.35(4) Å3, Z=4. The structure is topologically similar to In2TiO5 but differs in space group and cation coordination. CuZrTiO5 has relatively regular TiO6 polyhedra, but coordination is 7+1 for Zr, and 4+2 for Cu due to the Jahn-Teller effect. Ordering of the long Cu-O bonds causes reduction in symmetry relative to In2TiO5. Layers of Cu alternate with Ti+Zr on (001), giving rise to a distinct cleavage. Bond valence sums on Ti and Zr are far from ideal, which appears due to the limited ability of this structural topology to avoid close next-nearest neighbour distances.  相似文献   

4.
Novel Bi2W2O9 and Bi2Mo2O9 with irregular polyhedron structure were successfully synthesized by a hydrothermal method. Compared to ordinary Bi2WO6 and Bi2MoO6, the modified structure of Bi2W2O9 and Bi2Mo2O9 were observed, which led to an enhancement of photocatalytic performance. To investigate the possible mechanism of enhancing photocatalytic efficiency, the crystal structure, morphology, elemental composition, and optical properties of Bi2WO6, Bi2MO6, Bi2W2O9, and Bi2Mo2O9 were examined. UV-Vis diffuse reflectance spectroscopy revealed the visible-light absorption ability of Bi2WO6, Bi2MO6, Bi2W2O9, and Bi2Mo2O9. Photoluminescence (PL) and photocurrent indicated that Bi2W2O9 and Bi2Mo2O9 pose an enhanced ability of photogenerated electron–hole pairs separation. Radical trapping experiments revealed that photogenerated holes and superoxide radicals were the main active species. It can be conjectured that the promoted photocatalytic performance related to the modified structure, and a possible mechanism was discussed in detail.  相似文献   

5.
Two novel noncentrosymmetric borates oxides, MBi2B2O7 or MBi2O(BO3)2 (MCa, Sr), have been synthesized by solid-state reactions in air at temperatures in the 600-700 °C range. Their crystal structures have been determined ab initio and refined using powder neutron diffraction data. CaBi2B2O7 crystallizes in the orthorhombic Pna21 space group with a=8.9371(5) Å, b=5.4771(3) Å, c=12.5912(7) Å, Z=4, Rwp=0.118, χ2=2.30. SrBi2B2O7 crystallizes in the hexagonal P63 space group with a=9.1404(4) Å, c=13.0808(6) Å, Z=6, Rwp=0.115, χ2=4.15. Large displacement parameters suggest the presence of disorder in SrBi2B2O7 as also revealed by diffuse 2×a superstructure reflections in electron diffraction patterns. Both structures are built of identical (001) neutral layers of corner-sharing BO3 triangles and MO6 trigonal prisms forming six-membered rings in which Bi2O groups are located. Adjacent layers are stacked in a staggered configuration and connected through weak Bi-O bonds. A moderate efficiency for second harmonic generation (SHG) has been measured for a powder sample of CaBi2B2O7 (deff=2deff(KDP)).  相似文献   

6.
A novel sodium lead pentaborate, NaPbB5O9, has been successfully synthesized by standard solid-state reaction. The single-crystal X-ray structural analysis showed that NaPbB5O9 crystallizes in the monoclinic space group P21/c with a=6.5324(10) Å, b=13.0234(2) Å, c=8.5838(10) Å, β=104.971(10)°, and Z=4. The crystal structure is composed of double ring [B5O9]3− units, [PbO7] and [NaO7] polyhedra. [B5O9]3− groups connect with each other forming two-dimensional infinite [B5O9]3− layers, while [PbO7] and [NaO7] polyhedra are located between the layers. [PbO7] polyhedra linked together via corner-sharing O atom forming novel infinite [PbO6] chains along the c axis. The thermal behavior, IR spectrum and the optical diffuse reflectance spectrum of NaPbB5O9 were reported.  相似文献   

7.
The new Pb5Sb2MnO11 compound was synthesized using a solid-state reaction in an evacuated sealed silica tube at 650°C. The crystal structure was determined ab initio using a combination of X-ray powder diffraction, electron diffraction and high-resolution electron microscopy (a=9.0660(8)Å, b=11.489(1)Å, c=10.9426(9)Å, S.G. Cmcm, RI=0.045, RP=0.059). The Pb5Sb2MnO11 crystal structure represents a new structure type and it can be considered as quasi-one-dimensional, built up of chains running along the c-axis and consisting of alternating Mn+2O7 capped trigonal prisms and Sb2O10 pairs of edge sharing Sb+5O6 octahedra. The chains are joined together by Pb atoms located between the chains. The Pb+2 cations have virtually identical coordination environments with a clear influence of the lone electron pair occupying one vertex of the PbO5E octahedra. Electronic structure calculations and electron localization function distribution analysis were performed to define the nature of the structural peculiarities. Pb5Sb2MnO11 exhibits paramagnetic behavior down to T=5 K with Weiss constant being nearly equal to zero that implies lack of cooperative magnetic interactions.  相似文献   

8.
Long-chain arylpiperazine scaffold is a versatile template to design central nervous system (CNS) drugs that target serotonin and dopamine receptors. Here we describe the synthesis and biological evaluation of ten new arylpiperazine derivatives designed to obtain an affinity profile at serotonin 5-HT1A, 5-HT2A, 5-HT7 receptor, and dopamine D2 receptor of prospective drugs to treat the core symptoms of autism spectrum disorder (ASD) or psychosis. Besides the structural features required for affinity at the target receptors, the new compounds incorporated structural fragments with antioxidant properties to counteract oxidative stress connected with ASD and psychosis. All the new compounds showed CNS MultiParameter Optimization score predictive of desirable ADMET properties and cross the blood–brain barrier. We identified compound 12a that combines an affinity profile compatible with antipsychotic activity (5-HT1A Ki = 41.5 nM, 5-HT2A Ki = 315 nM, 5-HT7 Ki = 42.5 nM, D2 Ki = 300 nM), and compound 9b that has an affinity profile consistent with studies in the context of ASD (5-HT1A Ki = 23.9 nM, 5-HT2A Ki = 39.4 nM, 5-HT7 Ki = 45.0 nM). Both compounds also had antioxidant properties. All compounds showed low in vitro metabolic stability, the only exception being compound 9b, which might be suitable for studies in vivo.  相似文献   

9.
A particular pathology of certain W5Si3-type A5B3 structures (I4/mcm) appears to arise because of unduly close approaches of the A1-type atoms on the cell faces at , 0, () that occur with the larger and more electropositive A and/or in the presence of smaller B atoms. A structure refinement of binary Ba4.81Pb3 indicates such a marginal stability in that the Ba atoms in the facial Ba0.81 chains exhibit an extreme displacement ellipsoid along . Although Ca5Sn3 and La5Ga3 binaries are unknown in this structure type, five stable ternary derivatives of these have been synthesized via substitution reactions and characterized by single crystal X-ray diffraction means: Ca4Sn3.223(4)Mg0.777, Ca4Sn3Cu1.30(4), Ca4.66(6)Sn3Zn0.704(4), La4.81(1)Ga1.38(2)Al1.62, and La4.762(5)Ga1.5(1)Zn1.5. Only the Ca-Sn-Zn phase exhibits lower symmetry, P4/mbm. The problematic A1 sites exhibit diverse changes in these, whereas the surrounding B2 tetrahedra are largely unaltered. The Ca-Sn results are, respectively: direct Mg/Sn substitution at the Ca1 site; mixed fractional distribution of the smaller Cu at two sites around the A1 position with an unresolved disorder; a pair of apparently independent modes, fractional Ca in the normal position and fractional Zn rectangles thereabout. The two La-Sn phases contain normal Ga,Al (Ga,Zn) tetrahedral chains with pairs of fractional disordered La atoms along , 0, z. Each can be rationalized in terms of a reasonable incommensurate structure. Electronic effects may also be operable.  相似文献   

10.
Phase equilibria and crystal structures of ternary compounds were determined in the systems Ce-Pd-B and Yb-Pd-B at 850 °C in the concentration ranges up to 45 and 33 at% of Ce and Yb, respectively, employing X-ray single crystal and powder diffraction. Phase relations in the Ce-Pd-B system at 850 °C are governed by formation of extended homogeneity fields, τ2-CePd8B2−x (0.10<x<0.48); τ3-Ce3Pd25−xB8−y (1.06<x<1.87; 2.20<y<0.05), and CePd3Bx (0<x<0.65) the latter arising from binary CePd3. Crystallographic parameters for the new structure type τ2-CePd8B2−x (space group C2/c, a=1.78104(4) nm, b=1.03723(3) nm, c=1.16314(3), β=118.515(1)° for x=0.46) were established from X-ray single crystal diffraction. The crystal structures of τ2-CePd8B2−x and τ3-Ce3Pd25−xB3−y are connected in a crystallographic group-subgroup relationship. Due to the lack of suitable single crystals, the novel structure of τ1-Ce6Pd47−xB6 (x=0.2, C2/m space group, a=1.03594(2) nm, b=1.80782(3) nm, c=1.01997(2) nm, β=108.321(1)°) was determined from Rietveld refinement of X-ray powder diffraction data applying the structural model obtained from single crystals of homologous La6Pd47−xB6 (x=0.19) (X-ray single crystal diffraction, new structure type, space group C2/m, a=1.03988(2) nm, b=1.81941(5) nm, c=1.02418(2) nm, β=108.168(1)°).The Yb-Pd-B system is characterized by one ternary compound, τ1-Yb2Pd14B5, forming equilibria with extended solution YbPd3Bx, YbB6, Pd5B2 and Pd3B. The crystal structures of both Yb2Pd14B5 and isotypic Lu2Pd14B5 were determined from X-ray Rietveld refinements and found to be closely related to the Y2Pd14B5-type (I41/amd). The crystal structure of binary Yb5Pd2−x (Mn5C2-type) was confirmed from X-ray single crystal data and a slight defect on the Pd site (x=0.06) was established.The three structures τ1-Ce6Pd47−xB6, τ2-CePd8B2−x and τ3-Ce3Pd25−xB8−y are related and can be considered as the packings of fragments observed in Nd2Fe14B structure with different stacking of common structural blocks.Physical properties for Yb2Pd13.6B5 (temperature dependent specific heat, electrical resistivity and magnetization) yielded a predominantly Yb-4f13 electronic configuration, presumably related with a magnetic instability below 2 K. Kondo interaction and crystalline electric field effects control the paramagnetic temperature domain.  相似文献   

11.
Large single crystals from RENi2-xP2 (RE=La, Ce, Pr) were synthesized from the pure elements using Sn as a metal flux, and their structures were established by X-ray crystallography. The title compounds were confirmed to crystallize in the body-centered tetragonal ThCr2Si2 structure type (space group I4/mmm (No. 139); Pearson's symbol tI10), but with a significant homogeneity range with respect to the transition metal. Systematic synthetic work, coupled with accurate structure refinements indicated strong correlation between the degree of Ni-deficiency and the reaction conditions. According to the temperature dependent dc magnetization measurements, LaNi2-xP2 (x=0.30(1)), as expected, is Pauli-like paramagnetic in the studied temperature regime, while the Ce-analog CeNi2-xP2 (x=0.28(1)) shows the characteristics of a mixed valent Ce3+/Ce4+ system with a possible Kondo temperature scale on the order of 1000 K. For three different PrNi2-xP2 (x?0.5) samples, the temperature and field dependence of the magnetization indicated typical local moment 4f-magnetism and a stable Pr3+ ground state, with subtle variations of TC as a function of the concentration of Ni defects. Field-dependent heat capacity data for CeNi2-xP2 (x=0.28(1)) and PrNi2-xP2 (x=0.53(1)) are discussed as well.  相似文献   

12.
The basic mercury(I) chromate(VI), Hg6Cr2O9 (=2Hg2CrO4·Hg2O), has been obtained under hydrothermal conditions (200 °C, 5 days) in the form of orange needles as a by-product from reacting elemental mercury and K2Cr2O7. Hydrothermal treatment of microcrystalline Hg6Cr2O9 in demineralised water at 200 °C for 3 days led to crystal growth of red crystals of the basic mercury(I, II) chromate(VI), Hg6Cr2O10 (=2Hg2CrO4·2HgO). The crystal structures were solved and refined from single crystal X-ray data sets. Hg6Cr2O9: space group P212121, Z=4, a=7.3573(12), b=8.0336(13), , 3492 structure factors, 109 parameters, R[F2>2σ(F2)]=0.0371, wR(F2 all)=0.0517; Hg6Cr2O10: space group Pca21, Z=4, a=11.4745(15), b=9.4359(12), , 3249 structure factors, 114 parameters, R[F2>2σ(F2)]=0.0398, wR(F2 all)=0.0625. Both crystal structures are made up of an intricate mercury-oxygen network, subdivided into single building blocks [O-Hg-Hg-O] for the mercurous compound, and [O-Hg-Hg-O] and [O-Hg-O] for the mixed-valent compound. Hg6Cr2O9 contains three different Hg22+ dumbbells, whereas Hg6Cr2O10 contains two different Hg22+ dumbbells and two Hg2+ cations. The HgI-HgI distances are characteristic and range between 2.5031(15) and 2.5286(9) Å. All Hg22+ groups exhibit an unsymmetrical oxygen environment. The oxygen coordination of the Hg2+ cations is nearly linear with two tightly bonded O atoms at distances around 2.07 Å. For both structures, the chromate(VI) anions reside in the vacancies of the Hg-O network and deviate only slightly from the ideal tetrahedral geometry with average Cr-O distances of ca. 1.66 Å. Upon heating at temperatures above 385 °C, Hg6Cr2O9 decomposes in a four-step mechanism with Cr2O3 as the end-product at temperatures above 620 °C.  相似文献   

13.
Titanium diboride, TiB2, crystallizes in the AlB2-type structure, hexagonal P6/mmm. The conventional, free atom crystal structure refinement led to R=2.23%, and including extinction corrections to R=1.58%. Multipole refinements with multipoles up to order four (hexadecapole) reduced the R value to 1.21%. Difference density maps revealed charge deficiencies on the boron sites and broadbands of charge accumulations between the boron atoms indicating a graphitic B-delocalization of the boron sp2 hybrid orbitals.  相似文献   

14.
This paper reports about two new hydrogen-containing rare-earth oxoborates RE4B6O14(OH)2 (RE=Dy, Ho) synthesized under high-pressure/high-temperature conditions from the corresponding rare-earth oxides, boron oxide, and water using a Walker-type multianvil equipment at 8 GPa and 880 °C. The single crystal structure determination of Dy4B6O14(OH)2 showed: Pbcn, a=1292.7(2), b=437.1(2), , Z=2, R1=0.0190, and wR2=0.0349 (all data). The isotypic holmium species revealed: Pbcn, a=1292.8(2), b=436.2(2), , Z=2, R1=0.0206, and wR2=0.0406 (all data). The compounds exhibit a new type of structure, which is built up from layers of condensed BO4-tetrahedra. Between the layers, the rare-earth cations are coordinated by 7+2 oxygen atoms. Furthermore, we report about temperature-resolved in situ powder diffraction measurements, DTA/TG, and IR-spectroscopic investigations into RE4B6O14(OH)2 (RE=Dy, Ho).  相似文献   

15.
Thermal analysis (TG and DTA) was employed for the characterization of V2O5/TiO2 catalysts supported on high surface area TiO2. The results obtained are consistent with a uniform spreading of vanadium oxide on TiO2 surface for V2O5 content less than 15% by weight.The presence of V2O5 on the surface of TiO2 affects the anatase-rutile phase transition lowering the temperature at which it occurs.DTA measurements, performed on catalysts after many months from the preparation, show the appearance of an exothermic peak in the range 280°–340°C. This signal has been related to the oxidation of V(IV) to V(V) on the catalyst surface.Catalysts characterization, performed by chemical analysis and FT-IR spectroscopy, has confirmed this interpretation.It has been suggested that a slow modification of the catalyst occurs, leading to an increase of the V(IV) content during the time.
Zusammenfassung Zur Charakterisierung von V2O5/TiO2-Katalysatoren auf hochoberflächigem TiO2 Trägermaterial wurde die Thermoanalyse (TG und DTA) angewendet. Für einen V2O5-Gehalt von weniger als 15 Gew.% entsprechen die erhaltenen Ergebnisse einer gleichmäßigen Verteilung des Vanadiumoxides an der TiO2-Oberfläche.Die Gegenwart von V2O5 an der Oberfläche von TiO2 beeinflußt die Anatas-Rutil-Phasenumwandlung, indem sie die zugehörige Temperatur verringert.DTA-Messungen an Katalysatoren mehrere Monate nach ihrer Herstellung zeigten das Auftreten eines exothermen Peaks im Bereich 280°–340°C. Dieses Signal wurde der Oxidation von V(IV) zu V(V) an der Katalysatoroberfläche zugeschrieben.Diese Interpretation konnte durch eine Charakterisierung des Katalysatoren durch chemische Analyse und FT-IR-Spektroskopie bestätigt werden.Es wurde angedeutet, daß der Katalysator mit der Zeit einer langsamen Modifikation unterliegt, die zu einem Ansteigen des V(IV)-Gehaltes führt.
  相似文献   

16.
Using diamond anvil cell technique with angle dispersive X-ray diffraction (ADXD) of synchrotron radiation and electrical conductivity measurements, we have observed that CuO2 chain compound Li2CuO2 transforms from ambient orthorhombic symmetry into a new phase at above 5.4 GPa and room temperature. The new phase was found to be of monoclinic structure with an increased oxygen coordination number of Cu2+ from four at ambient to six at high pressure that provides a structural basis of the evolution of principle physical properties. The high pressure phase of Li2CuO2 is discussed in line with the first principle calculations.  相似文献   

17.
Three new hybrid crystals of 2-aminophenol-HClO4 (2-AP-HClO4, 1), 3-aminophenol-HClO4 (3-AP-HClO4, 2) and 4-aminophenol-HClO4 (4-AP-HClO4, 3) were obtained and their crystal structures determined. The 1 crystallises in centrosymmetric space group C2/c of monoclinic system while the other two (2 and 3) crystallise in the non-centro symmetric space group P21 and P212121, respectively. The oppositely charged units of the crystals, i.e. positively charged 2-APH+, 3-APH+ and 4-APH+ and ClO4, interact via weak N+–HO and O–HO hydrogen bonds forming 3D-supramolecular network. Relative to KDP the SHG efficiencies are 0.62 for 2 and 0.33 for 3, measured at 1064 nm using the Kurtz–Perry method.  相似文献   

18.
In this work we report about a new rare-earth oxoborate β-Dy2B4O9 synthesized under high-pressure/high-temperature conditions from Dy2O3 and boron oxide B2O3 in a B2O3/Na2O2 flux with a walker-type multianvil apparatus at 8 GPa and 1000°C. Single crystal X-ray structure determination of β-Dy2B4O9 revealed: , a=616.2(1) pm, b=642.8(1) pm, c=748.5(1) pm, α=102.54(1)°, β=97.08(1)°, γ=102.45(1)°, Z=2, R1=0.0151, wR2=0.0475 (all data). The compound exhibits a new structure type which is built up from bands of linked BO3- (Δ) and tetrahedral BO4-groups (□). The Dy3+-cations are positioned in the voids between the bands. According to the conception of fundamental building blocks β-Dy2B4O9 can be classified with the notation 2Δ6□:Δ3□=4□=3□Δ. Furthermore we report about temperature-resolved in situ powder diffraction measurements and IR-spectroscopic investigations on β-Dy2B4O9.  相似文献   

19.
Two new compounds, La3Ru8B6 and Y3Os8B6, were synthesized by arc melting the elements. Their structural characterization was carried out at room temperature on as-cast samples by using X-ray diffractometry. According to X-ray single-crystal diffraction results these borides crystallize in Fmmm space group (no. 69), Z=4, a=5.5607(1) Å, b=9.8035(3) Å, c=17.5524(4) Å, ρ=8.956 Mg/m3, μ=25.23 mm−1 for La3Ru8B6 and a=5.4792(2) Å, b=9.5139(4) Å, c=17.6972(8) Å, ρ=13.343 Mg/m3, μ=128.23 mm−1 for Y3Os8B6. The crystal structure of La3Ru8B6 was confirmed from Rietveld refinement of X-ray powder diffraction data. Both La3Ru8B6 and Y3Os8B6 compounds are isotypic with the Ca3Rh8B6 compound and their structures are built up from CeCo3B2-type and CeAl2Ga2-type structural fragments taken in ratio 2:1. They are the members of structural series R(A)nM3n−1B2n with n=3 (R is the rare earth metal, A the alkaline earth metal, and M the transition metal). Structural and atomic parameters were also obtained for La0.94Ru3B2 compound from Rietveld refinement (CeCo3B2-type structure, P6/mmm space group (no. 191), a=5.5835(9) Å, c=3.0278(6) Å).  相似文献   

20.
Zinc ferrite nano-powders with a nominal composition of ZnFe2O4 were prepared by combustion synthesis using mixture of urea and ammonium nitrate as fuel. The influence of alumina-doping on the structural, morphological and magnetic properties of ZnFe2O4 nano-particles was investigated by means of X-ray powder diffraction (XRD), infrared (IR) spectroscopy, scanning and transmission electron microscopy (SEM and TEM) and vibrating sample magnetometer (VSM). XRD and IR analyses confirm the cubic spinel phase of ZnFe2O4 nano-particles. The Zn ferrite presented a uniform microstructure with grain size in nano-scale. Alumina-doping brought about a change in the morphology of the as prepared ferrite from sphere-like to regular hexagon. Al2O3-treatment led to a decrease in the coercivity (Hc), magnetization (Ms) and magnetic moment (nB) of the investigated system. The maximum decrease in the values of Hc, Ms and nB due to the treatment with 1.5 wt% Al2O3 attained 13.5, 17.4 and 13.5%, respectively. The observed results can be explained on the basis of particle size and the Fe3+ concentration in the octahedral and tetrahedral sites involved in the cubic spinel structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号