首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermoelectric properties of some metal borides   总被引:1,自引:0,他引:1  
Polycrystalline AlMgB14 and some hexaborides (CaB6, SrB6, YbB6, SmB6, and CeB6) were synthesized to examine their thermoelectric properties. Single phase of orthorhombic AlMgB14, which contains B12 icosahedral clusters as building blocks, was obtained at sintering temperatures between 1573 and 1823 K. Seebeck coefficient (α) and electrical conductivity (σ) of the phase were about 500 μV/K and 10−1 1/Ω m at room temperature, respectively. These values are comparable to those of metal-doped β-rhombohedral boron. On the other hand, metal hexaborides with divalent cation possessed large negative α ranging from −100 to −270 μV/K at 1073 K. Calculated power factors of CaB6 and SrB6 exceeded 10−3 W/K2 m within the entire range of temperature measured. As a result, they can be thought as promising candidates for n-type thermoelectric material.  相似文献   

2.
Brownmillerite calcium ferrite was synthesized in air at 1573 K and thermoelectric properties (direct current electrical conductivity σ, Seebeck coefficient α, thermal conductivity κ, thermal expansion αL) were measured from 373 to 1050 K in air. Seebeck coefficient was positive over all temperatures indicating conduction by holes, and electrical properties were continuous through the Pnma-Imma phase transition. Based on the thermopower and conductivity activation energies as well as estimated mobility, polaron hopping conduction was found to dominate charge transport. The low electrical conductivity, <1 S/cm, limits the power factor (α2σ), and thus the figure of merit for thermoelectric applications. The thermal conductivity values of ∼2 W/mK and their similarity to Ruddlesden-Popper phase implies the potential of the alternating tetrahedral and octahedral layers to limit phonon propagation through brownmillerite structures. Bulk linear coefficient of thermal expansion (∼14×10−6 K−1) was calculated from volume data based on high-temperature in situ X-ray powder diffraction, and shows the greatest expansion perpendicular to the alternating layers.  相似文献   

3.
Thermoelectric properties of polycrystalline La1−xSrxCoO3, where Sr2+ is substituted in La3+ site in perovskite-type LaCoO3, have been investigated. Sr-doping increases the electrical conductivity (σ) of La1−xSrxCoO3, and also decreases the Seebeck coefficient (S) for 0.01?x?0.40. A Hall coefficient measurement reveals that the increase in electrical conductivity arises from increases in both carrier concentration and the Hall mobility. The decrease in the Seebeck coefficient is caused by a decrease in carrier effective mass as well as increase in carrier concentration. The highest power factor (σS2) is 3.7×10−4 W m−1 K−2 at 250 K for x=0.10. The thermal conductivity (κ) is about 2 W m−1 K−1 at 300 K for 0?x?0.04, and increases for x?0.05 because of an increase in heat transport by conductive carrier. The thermoelectric properties of La1−xSrxCoO3 are improved by Sr-doping, and the figure of merit (Z=σS2 κ−1) reaches 1.6×10−4 K−1 for x=0.06 at 300 K (ZT=0.048). For heavily Sr-doped samples, the thermoelectric properties diminish mainly because of the decrease in the Seebeck coefficient and the increase in thermal conductivity.  相似文献   

4.
Titanium-doped single crystals (cTi=0-2×1020 atoms cm−3) were prepared from the elements Sb, Ti, and Te of 5 N purity by a modified Bridgman method. The obtained crystals were characterized by measurements of the temperature dependence of the electrical resistivity, Hall coefficient, Seebeck coefficient and thermal conductivity in the temperature range of 3-300 K. It was observed that with an increasing Ti content in the samples the electrical resistivity, the Hall coefficient and the Seebeck coefficient increase. This means that the incorporation of Ti atoms into the Sb2Te3 crystal structure results in a decrease in the concentration of holes in the doped crystals. For the explanation of the observed effect a model of defects in the crystals is proposed. The data of the lattice thermal conductivity were fitted well assuming that phonons scatter on boundaries, point defects, charge carriers, and other phonons.  相似文献   

5.
Heterogeneous nanocomposites of p-type bismuth antimony telluride (Bi2−xSbxTe3) with lead telluride (PbTe) nanoinclusions have been prepared by an incipient wetness impregnation approach. The Seebeck coefficient, electrical resistivity, thermal conductivity and Hall coefficient were measured from 80 to 380 K in order to investigate the influence of PbTe nanoparticles on the thermoelectric performance of nanocomposites. The Seebeck coefficients and electrical resistivities of nanocomposites decrease with increasing PbTe nanoparticle concentration due to an increased hole concentration. The lattice thermal conductivity decreases with the addition of PbTe nanoparticles but the total thermal conductivity increases due to the increased electronic thermal conductivity. We conclude that the presence of nanosized PbTe in the bulk Bi2−xSbxTe3 matrix results in a collateral doping effect, which dominates transport properties. This study underscores the need for immiscible systems to achieve the decreased thermal transport properties possible from nanostructuring without compromising the electronic properties.  相似文献   

6.
Two‐dimensional (2D) WS2 nanosheets (NSs) as a promising thermoelectric (TE) material have gained great concern recently. The low electrical conductivity significantly limits its further development. Herein, we reported an effective method to enhance the TE performance of WS2 NSs by combining poly(3,4‐ethylenedioxythiophene):poly(4‐styrenesulfonate) (PEDOT:PSS). The restacked WS2 NSs thin film with 1T phase structure obtained by a common chemical lithium intercalation show a high Seebeck coefficient of 98 μV K?1 and a poor electrical conductivity of 12.5 S cm?1. The introduction of PEDOT:PSS with different contents obviously improve the electrical conductivity of WS2 NSs thin films. Although a declining Seebeck coefficient was observed, an optimized TE power factor of 45.2 μW m?1 k?1 was achieved for WS2/PEDOT:PSS composite thin film. Moreover, the as‐prepared WS2/PEDOT:PSS thin film can be easily peeled off and transferred to other substrate leading to a more promising application. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 997–1004  相似文献   

7.
We show that Rh substitution at the Co site in Zr0.5Hf0.5Co1−xRhxSb0.99Sn0.01 (0≤x≤1) half-Heusler alloys strongly reduces the thermal conductivity with a simultaneous, significant improvement of the power factor of the materials. Thermoelectric properties of hot-pressed pellets of several compositions with various Rh concentrations were investigated in the temperature range from 300 to 775 K. The Rh “free” composition shows n-type conduction, while Rh substitution at the Co site drives the system to p-type semiconducting behavior. The lattice thermal conductivity of Zr0.5Hf0.5Co1−xRhxSb0.99Sn0.01 alloys rapidly decreased with increasing Rh concentration and lattice thermal conductivity as low as 3.7 W/m*K was obtained at 300 K for Zr0.5Hf0.5RhSb0.99Sn0.01. The drastic reduction of the lattice thermal conductivity is attributed to mass fluctuation induced by the Rh substitution at the Co site, as well as enhanced phonon scattering at grain boundaries due to the small grain size of the synthesized materials.  相似文献   

8.
Thermoelectric (TE) materials convert heat energy directly into electricity, and introducing new materials with high conversion efficiency is a great challenge because of the rare combination of interdependent electrical and thermal transport properties required to be present in a single material. The TE efficiency is defined by the figure of merit ZT=(S2σ) T/κ, where S is the Seebeck coefficient, σ is the electrical conductivity, κ is the total thermal conductivity, and T is the absolute temperature. A new p‐type thermoelectric material, CsAg5Te3, is presented that exhibits ultralow lattice thermal conductivity (ca. 0.18 Wm?1 K?1) and a high figure of merit of about 1.5 at 727 K. The lattice thermal conductivity is the lowest among state‐of‐the‐art thermoelectrics; it is attributed to a previously unrecognized phonon scattering mechanism that involves the concerted rattling of a group of Ag ions that strongly raises the Grüneisen parameters of the material.  相似文献   

9.
Spark plasma sintering method was applied to prepare bulk n-type Bi1.9Lu0.1Te2.7Se0.3 samples highly textured along the 001 direction parallel to the pressing direction. The texture development is confirmed by X-ray diffraction analysis and scanning electron microscopy. The grains in the textured samples form ordered lamellar structure and lamellar sheets lie in plane perpendicular to the pressing direction. The average grain size measured along the pressing direction is much less as compared to the average grain size measured in the perpendicular direction (∼50 nm against ∼400 nm). A strong anisotropy in the transport properties measured along directions parallel and perpendicular to the pressing direction within the 290 ÷ 650 K interval was found. The specific electrical resistivity increases and the thermal conductivity decreases for the parallel orientation as compared to these properties for the perpendicular orientation. The Seebeck coefficient for both orientations is almost equal. Increase of the electrical resistivity is stronger than decrease of the thermal conductivity resulting in almost three-fold enhancement of the thermoelectric figure-of-merit coefficient for the perpendicular orientation (∼0.68 against ∼0.24 at ∼420 K). The texturing effect can be attributed to (i) recovery of crystal structure anisotropy typical for the single crystal Bi2Te3-based alloys and (ii) grain boundary scattering of electrons and phonons. An onset of intrinsic conductivity observed above Td ≈ 410 K results in appearance of maxima in the temperature dependences of the specific electrical resistivity, the Seebeck coefficient and the thermoelectric figure-of-merit coefficient and minimum in the temperature dependence of the total thermal conductivity. The intrinsic conductivity is harmful for the thermoelectric efficiency enhancement since thermal excitation of the electron-hole pairs reduces the Seebeck coefficient and increases the thermal conductivity.  相似文献   

10.
Large samples (6-8 g) of Yb11Sb10 and Ca11Sb10 have been synthesized using a high-temperature (1275-1375 K) flux method. These compounds are isostructural to Ho11Ge10, crystallizing in the body-centered, tetragonal unit cell, space group I4/mmm, with Z=4. The structure consists of antimony dumbbells and squares, reminiscent of Zn4Sb3 and filled Skutterudite (e.g., LaFe4Sb12) structures. In addition, these structures can be considered Zintl compounds; valence precise semiconductors with ionic contributions to the bonding. Differential scanning calorimetry (DSC), thermogravimetry (TG), resistivity (ρ), Seebeck coefficient (α), thermal conductivity (κ), and thermoelectric figure of merit (zT) from room temperature to at minimum 975 K are presented for A11Sb10 (A=Yb, Ca). DSC/TG were measured to 1400 K and reveal the stability of these compounds to ∼1200 K. Both A11Sb10 (A=Yb, Ca) materials exhibit remarkably low lattice thermal conductivity (∼10 mW/cm K for both Yb11Sb10 and Ca11Sb10) that can be attributed to the complex crystal structure. Yb11Sb10 is a poor metal with relatively low resistivity (1.4 mΩ cm at 300 K), while Ca11Sb10 is a semiconductor suggesting that a gradual metal-insulator transition may be possible from a Ca11−xYbxSb10 solid solution. The low values and the temperature dependence of the Seebeck coefficients for both compounds suggest that bipolar conduction produces a compensated Seebeck coefficient and consequently a low zT.  相似文献   

11.
Phonon spectra of CaB6 and RB6 (R=Yb, Ce, and Pr) have been investigated by Raman scattering. We found clear spectral difference between divalent cation hexaboride and trivalent one. Eg mode shows the doublet spectra for only the divalent crystals of CaB6 and YbB6. The doublet spectra are understood by the two-dimensional charge distribution on B6 without lattice distortion. In addition, the scattered intensities of the phonons change at around the ferromagnetic Curie temperature for YbB6 and at T?600 K for CaB6. These are the characteristic temperatures due to the change of the electronic system.  相似文献   

12.
The paper reports on the temperature dependence of the electrical and thermal conductivity, Hall constant, and Seebeck coefficient of Bi2−xInxSe3 (x=0, 0.2, 0.4) single crystals measured over the temperature range from 2 to 300 K. One single-valley conduction band model is used to interpret relations among transport coefficients. The data analysis relies on the use of a mixed carrier scattering mechanism consisting of acoustic scattering and scattering on ionized impurities. The effect of In incorporation into the Bi2Se3 crystal lattice on the individual components of thermal conductivity is evaluated and discussed.  相似文献   

13.
The title compound was prepared as single crystals using an aluminum flux technique. Single crystal and powder X-ray diffraction indicate that this composition crystallizes in the clathrate type-I structure, space group Pm3?n. Electron microprobe characterization indicates the composition to be Ba8−ySryAl14.2(2)Si31.8(2) (0.77<y<1.3). Single-crystal X-ray diffraction data (90 and 12 K) were refined with the Al content fixed at the microprobe value (12 K data: R1=0.0233, wR2=0.0441) on a crystal of compositions Ba. The Sr atom preferentially occupies the 2a position; mixed Al/Si occupancy was found on all framework sites. These refinements are consistent with a fully occupied framework and nearly fully occupied cation guest sites as found by microprobe analysis. Temperature dependent electrical resistivity and thermal conductivity have been measured from room temperature to 1200 K on a hot-pressed pellet. Electrical resistivity reveals metallic behavior. The negative Seebeck coefficient indicates transport processes dominated by electrons as carriers. Thermal conductivity is between 22 and 25 mW/cm K. The sample shows n-type conductivity with a maximum figure of merit, zT of 0.3 at 1200 K. A single parabolic band model predicts a five-fold increase in zT at 800 K if carrier concentration is lowered.  相似文献   

14.
Single crystals of SrAl2Si2 were synthesized by reaction of the elements in an aluminum flux at 1000 °C. SrAl2Si2 is isostructural to CaAl2Si2 and crystallizes in the hexagonal space group P-3m1 (90 K, a=4.1834 (2), c=7.4104 (2) Å, Z=1, R1=0.0156, wR2=0.0308). Thermal analysis shows that the compound melts at ∼1020 °C. Low-temperature resistivity on single crystals along the c-axis shows metallic behavior with room temperature resistivity value of ∼7.5 mΩ cm. High-temperature Seebeck, resistivity, and thermal conductivity measurements were made on hot-pressed pellets. The Seebeck coefficient shows negative values in entire temperature range decreasing from ∼−78 μV K−1 at room temperature to −34 μV K−1 at 1173 K. Seebeck coefficients are negative indicating n-type behavior; however, the temperature dependence is consistent with contribution from minority p-type carriers as well. The lattice contribution to the thermal conductivity is higher than for clathrate structures containing Al and Si, approximately 50 mW cm−1 K, and contributes to the overall low zT for this compound.  相似文献   

15.
The performance of the thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT=S2σT/K, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature and K is the thermal conductivity. ZT can be increased by increasing S, increasing σ, or decreasing K. We have prepared the thermoelectric generator device of SiO2/SiO2+Ge multilayer superlattice films using the ion beam assisted deposition (IBAD). The 5 MeV Si ion bombardments have been performed using the AAMU Pelletron ion beam accelerator at five different fluences to make quantum structures (nanodots and/or nanoclusters) in the multilayer superlattice thin films to decrease the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and cross plane electrical conductivity. To characterize the thermoelectric generator devices before and after MeV Si ions bombardments at the different fluences we have measured the cross-plane Seebeck coefficient, the cross-plane electrical conductivity, and the cross-plane thermal conductivity, Raman spectra to get some information about the sample structure and bond structures among the used elements in the superlattice thin film systems.  相似文献   

16.
Mg3Sb2 has been prepared by direct reaction of the elements. Powder X-ray diffraction, thermal gravimetric, differential scanning calorimetery, and microprobe data were obtained on hot pressed samples. Single phase samples of Mg3Sb2 were prepared and found to contain oxygen at the grain boundaries and to lose Mg and oxidize at temperatures above 900 K. Thermoelectric properties were characterized by Seebeck, electrical resistivity, and thermal conductivity measurements from 300 to 1023 K, and the maximum zT was found to be 0.21 at ∼875 K.  相似文献   

17.
We have prepared electrodeposited boron wafer by molten salts with KBF4-KF at 680°C using graphite crucible for anode and silicon wafer and nickel plate for cathodes. Experiments were performed by various molar ratios KBF4/KF and current densities. Amorphous p-type boron wafers with purity 87% was deposited on nickel plate for 1 h. Thermal diffusivity by ring-flash method and heat capacity by DSC method produced thermal conductivity showing amorphous behavior in the entire temperature range. The systematical results on thermoelectric properties were obtained for the wafers prepared with KBF4-KF (66-34 mol%) under various current densities in the range 1-2 A/cm2. The temperature dependencies of electrical conductivity showed thermal activated type with activation energy of 0.5 eV. Thermoelectric power tended to increase with increasing temperature up to high temperatures with high values of (1-10) mV/K. Thermoelectric figure-of-merit was 10−4/K at high temperatures. Estimated efficiency of thermoelectric energy conversion would be calculated to be 4-5%.  相似文献   

18.
The transport properties and lithium insertion mechanism into the first mixed valence silver-copper oxide AgCuO2 and the B-site mixed magnetic delafossite AgCu0.5Mn0.5O2 were investigated by means of four probes DC measurements combined with thermopower measurements and in situ XRD investigations. AgCuO2 and AgCu0.5Mn0.5O2 display p-type conductivity with Seebeck coefficient of Q=+2.46 and +78.83 μV/K and conductivity values of σ=3.2×10−1 and 1.8×10−4 S/cm, respectively. The high conductivity together with the low Seebeck coefficient of AgCuO2 is explained as a result of the mixed valence state between Ag and Cu sites. The electrochemically assisted lithium insertion into AgCuO2 shows a solid solution domain between x=0 and 0.8Li+ followed by a plateau nearby 1.7 V (vs. Li+/Li) entailing the reduction of silver to silver metal accordingly to a displacement reaction. During the solid solution, a rapid structure amorphization was observed. The delafossite AgCu0.5Mn0.5O2 also exhibits Li+/Ag+ displacement reaction in a comparable potential range than AgCuO2; however, with a prior narrow solid solution domain and a less rapid amorphization process. AgCuO2 and AgCu0.5Mn0.5O2 provide a discharge gravimetric capacity of 265 and 230 mA h/g above 1.5 V (vs. Li+/Li), respectively, with no evidence of a new defined phases.  相似文献   

19.
La9.750.25(Ge6O24)O2.62 oxy-apatite shows a phase transition from triclinic to hexagonal symmetry at approximately 1020 K that has been characterised by high-temperature synchrotron X-ray and neutron powder diffraction, and ionic conductivity measurements. The crystal structure at 1073 K has been determined from joint Rietveld refinements of synchrotron X-ray and neutron powder diffraction data. The study shows that hexagonal-La9.750.25(Ge6O24)O2.62 contains interstitial oxygen at the position previously reported for other oxy-germanates. Changes in the oxide conductivity associated with this structural transition are discussed. The thermal analyses showed a weight loss on heating close to 600 K very likely due to water release. The synchrotron thermodiffractometric study shows an anomaly in the cell parameters evolution at that temperature, which indicates that this residual water is located into the apatite channels. The electrical characterisation under different atmospheres (dry and wet synthetic air) indicates that there is a significant proton contribution to the overall conductivity below 600 K, mainly under wet atmosphere.  相似文献   

20.
Epoxy based polymer nano-composite was prepared by dispersing graphite nano-platelets (GNPs) using two different techniques: three-roll mill (3RM) and sonication combined with high speed shear mixing (Soni_hsm). The influence of addition of GNPs on the electrical and thermal conductivity, fracture toughness and storage modulus of the nano-composite was investigated. The GNP/epoxy prepared by 3RM technique showed a maximum electrical conductivity of 1.8 × 10−03 S/m for 1.0 wt% which is 3 orders of magnitude higher than those prepared by Soni_hsm. The percentage of increase in thermal conductivity was only 11% for 1.0 wt% and 14% for 2.0 wt% filler loading. Dynamic mechanical analysis results showed 16% increase in storage modulus for 0.5 wt%, although the Tg did not show any significant increase. Single edge notch bending (SENB) fracture toughens (KIC) measurements were carried out for different weight percentage of the filler content. The toughening effect of GNP was most significant at 1.0 wt% loading, where a 43% increase in KIC was observed. Among the two different dispersion techniques, 3RM process gives the optimum dispersion where both electrical and mechanical properties are better.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号