首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have prepared 14 new AABB′O6 perovskites which possess a rock salt ordering of the B-site cations and a layered ordering of the A-site cations. The compositions obtained are NaLnMnWO6 (Ln=Ce, Pr, Sm, Gd, Dy, and Ho) and NaLnMgWO6 (Ln=Ce, Pr, Sm, Eu, Gd, Tb, Dy, and Ho). The samples were structurally characterized by powder X-ray diffraction which has revealed metrically tetragonal lattice parameters for compositions with Ln=Ce, Pr and monoclinic symmetry for compositions with smaller lanthanides. Magnetic susceptibility vs. temperature measurements have found that all six NaLnMnWO6 compounds undergo antiferromagnetic ordering at temperatures between 10 and 13 K. Several compounds show signs of a second magnetic phase transition. One sample, NaPrMnWO6, appears to pass through at least three magnetic phase transitions within a narrow temperature range. All eight NaLnMgWO6 compounds remain paramagnetic down to 2 K revealing that the ordering of the Ln3+ cations in the NaLnMnWO6 compounds is induced by the ordering of the Mn2+ sub-lattice.  相似文献   

2.
Structures of the double perovskites Ba2M(II)M ′(VI)O6 (M=Ca, Sr, M′=Te, W, U) at room temperature have been investigated by the Rietveld method using X-ray and neutron powder diffraction data. For double perovskites with M=Sr, the observed space groups are I2/m (M′ =W) and (M′=Te), respectively. In the case of M=Ca, the space groups are either monoclinic P21/n (M′=U) or cubic (M′=W and Te). The tetragonal and orthorhombic symmetry reported earlier for Ba2SrTeO6 and Ba2CaUO6, respectively, were not observed. In addition, non-ambient X-ray diffraction data were collected and analyzed for Ba2SrWO6 and Ba2CaWO6 in the temperature range between 80 and 723 K. It was found that the rhombohedral structure exists in Ba2SrWO6 above room temperature between the monoclinic and the cubic structure, whereas the cubic Ba2CaWO6 undergoes a structural phase transition at low temperature to the tetragonal I4/m structure.  相似文献   

3.
A2MnB′O6 (A=Ca, Sr; B=Sb, Ta) double perovskites have been synthesized and their structural and magnetic properties have been investigated. Rietveld refinement of the powder X-ray diffraction data for Sr2MnSbO6 indicated significant ordering of Mn and Sb at the B-site while all other phases showed mostly a random distribution of the B-site cations. X-ray absorption spectroscopic data established the presence of Mn in the 3+ and Sb/Ta in the 5+ oxidation states in all the phases. Magnetic susceptibility data indicated ferromagnetic correlations for all the A2MnB′O6 phases with Weiss temperatures varying from 64 to 107 K.  相似文献   

4.
The ordered double perovskites ALaMgTaO6 (A=Ba, Sr, Ca) and La2Mg(Mg1/3Ta2/3)O6 have been prepared and characterized. Synchrotron X-ray powder diffraction analyses show that all four compounds exhibit a rock-salt type ordering of the B-site cations (Mg2+/Ta5+) and a random distribution of A-site cations (A2+/La3+). The space group symmetries are determined to be for BaLaMgTaO6, and P21/n for SrLaMgTaO6, CaLaMgTaO6, and La2Mg(Mg1/3Ta2/3)O6. Diffuse-reflectance spectroscopy shows these ordered perovskites have optical band gaps in the range of 4.6−4.8 eV. These values are roughly 1 eV wider than the ternary perovskite oxides of Ta5+ such as KTaO3, due to narrowing of the conduction bandwidth which results from Mg2+/Ta5+ ordering. These compounds are insulators with dielectric permittivities of κ=18-23, dielectric losses of tan δ=0.004-0.007, and small temperature coefficients of capacitance <100 ppm/K over the temperature range 20-150 °C. BaLaMgTaO6 is of particular interest because it possesses a near-zero temperature dependence of capacitance.  相似文献   

5.
The crystal structure of the low-temperature forms of Rb2KCrF6 and Rb2KGaF6 has been solved on single crystal. The symmetry is tetragonal with F4/m space group; the unit cell parameters are: , for Rb2KCrF6 at and , for Rb2KGaF6 at . The relationships between the parameters of the prototype cubic elpasolite, which is stable at high temperature, and the tetragonal superlattice of the low temperature form have been established. Considering the general formulation A2BB′F6, the cationic positions in the A and (B,B′) sublattices remain identical in the two allotropic varieties. The main originality of the structure concerns the environment of 4/5 of the potassium atoms (B sublattice) which is transformed from octahedra into pentagonal bipyramids sharing edges with adjacent B′F6 octahedra containing Cr or Ga. The displacive phase transition is simply explained by the rotation of 45° in the (a,b) plane of 1/5 of the B′F6 (B′=Cr, Ga) octahedra. The similarity of this phase transition and the transformation of perovskite into tetragonal tungsten bronze (TTB) will be discussed.  相似文献   

6.
7.
Although both end members in the (1−x)Ba(Li1/4Nb3/4)O3-xBa(Li2/5W3/5)O3 (BLNW) system adopt a hexagonal perovskite structure, B-site ordered cubic perovskites are formed for the majority of their solid solutions (0.238?x?0.833). Within this range, single-phase 1:2 order (, , ) is stabilized for 0.238?x?0.385. In contrast to all known A(B1/3IB2/3II)O3 perovskites, the 1:2 ordered BLNW solid solutions do not include any composition with a 1:2 cation distribution and the structure exhibits extensive non-stoichiometry. Structure refinements support a model where Li and W occupy different positions and Nb is distributed on both sites, i.e. Ba[(Li3/4+y/2Nb1/4−y/2)1/3(Nb1−yWy)2/3]O3 (y=0.21-0.35, where y=0.9x). The stabilization of the non-stoichiometric order arises from the large charge/size site differences; the loss of 1:2 order for W-rich compositions is related to local charge imbalances on the A-site sub-lattice. The range of single-phase 1:1 order is confined to x=0.833, (Ba(Li3/4Nb1/4)1/2(W)1/2)O3), where the site charge/size difference is maximized and the on-site mismatches are minimized. The microwave dielectric loss properties of the ordered BLNW solid solutions are significantly inferior as compared to their stoichiometric counterparts.  相似文献   

8.
9.
The disordered structures and low temperature dielectric relaxation properties of Bi1.667Mg0.70Nb1.52O7 (BMN) and Bi1.67Ni0.75Nb1.50O7 (BNN) misplaced-displacive cubic pyrochlores found in the Bi2O3-MIIO-Nb2O5 (M=Mg, Ni) systems are reported. As for other recently reported Bi-pyrochlores, the metal ion vacancies are found to be confined to the pyrochlore A site. The B2O6 octahedral sub-structure is found to be fully occupied and well-ordered. Considerable displacive disorder, however, is found associated with the O′A2 tetrahedral sub-structure in both cases. The A-site ions were displaced from Wyckoff position 16d (, , ) to 96 h (, , ) while the O′ oxygen was shifted from position 8b (, , ) to Wyckoff position 32e (, , ). The refined displacement magnitudes off the 16d and 8b sites for the A and O′ sites were 0.408 Å/0.423 Å and 0.350 Å/0.369 Å for BMN/BNN, respectively.  相似文献   

10.
Reported are the flux synthesis, the crystal structure determination, the properties and the band structure calculations of a new polymorph of CaGe2, which crystallizes with the hexagonal space group P63mc (no. 186) with cell parameters of a=3.9966(9) and c=10.211(4) Å (Z=2; Pearson's code hP6). The structure can be viewed as puckered layers of three-bonded germanium atoms, , which are stacked along the direction of the c-axis in an ABAB-fashion. The germanium polyanionic layers are separated by the Ca cations. As such, this structure is closely related to the structure of the other CaGe2 polymorph, which crystallizes with the rhombohedral CaSi2 type in the Rm space group (No. 166), where the layers are arranged in an AABBCC′-fashion, and are also interspaced by Ca2+ cations. LMTO calculations suggest that in spite of the formal closed-shell configuration for all atoms and the apparent adherence to the Zintl rules for electron counting, i.e., Ca2+[3b-Ge1−]2), the phase will be a poor metal due to a small Ca-3d-Ge-4p band overlap. Magnetic susceptibility measurements as a function of the temperature indicate that the new CaGe2 polymorph exhibits weak, temperature independent, Pauli-paramagnetism.  相似文献   

11.
The local environments for oxygen in yttrium-containing pyrochlores and fluorites, Y2(B1−xBx)2O7 (B=Ti, B′=Sn, Zr) are investigated by using solid state 17O MAS NMR spectroscopy. The quadrupolar coupling constants of the nucleus, 17O are sufficiently small for these ionic oxides, that high-resolution spectra are obtained from the MAS spectra. Different oxygen NMR resonances are observed due to local environments with differing numbers of metal cations (Y3+, Sn4+, Ti4+ and Zr4+), allowing the numbers of different local environments to be quantified and cation mixing to be investigated. Evidence for pyrochlore-like local ordering is detected for Y2Zr2O7, which nominally adopts the fluorite structure.  相似文献   

12.
A number of new, layered nitride mixed halides have been synthesised in the quaternary phase systems Sr-N-Cl-Br and Sr-N-Br-I. The variation in structure with composition has been investigated by powder X-ray and powder neutron diffraction techniques and the structure of strontium nitride iodide, Sr2NI, has been determined for the first time (rhombohedral space group R-3m, , , Z=3). A continuous solid solution exists between Sr2NCl and Sr2NBr with intermediate compounds adopting the same anti-α-NaFeO2 structure (rhombohedral space group R-3m) as the ternary end members. A similar smooth and linear relationship between structure and composition is seen from Sr2NBr to Sr2NI and hence cubic close packing of metal-nitrogen layers is adopted regardless of halide, X (X′). While nitride and halide anions occupy distinct crystallographic sites, there is no ordering of the halides in the quaternary materials irrespective of stoichiometry or temperature (between 3 and 673 K).  相似文献   

13.
The structure of 14 compounds in the series Ba2LnTaO6 have been examined using synchrotron X-ray diffraction and found to undergo a sequence of phase transitions from I2/m monoclinic to I4/m tetragonal to cubic symmetry with decreasing ionic radii of the lanthanides. Ba2LaTaO6 is an exception to this with variable temperature neutron diffraction being used to establish that the full series of phases adopted over the range of 15-500 K is P21/n monoclinic to I2/m monoclinic to rhombohedral. The chemical environments of these compounds have also been investigated and the overbonding to the lanthanide cations is due to the unusually large size for the B-site in these perovskites.  相似文献   

14.
A complex perovskite with composition Ca3Fe2WO9 has been synthesised, and the temperature evolution of nuclear and magnetic structures investigated by neutron powder diffraction. It was shown that at room temperature this compound adopts a monoclinic perovskite structure belonging to space group P121/n1 (, , ), β=90.04(2)°). The partial B-site ordering, of the Fe+3 and W+6 cations, at (2c) and (2d) sites was determined. At low temperatures the magnetic diffraction peaks were registered and a possible model for the magnetic structure was proposed in accordance with the ferrimagnetic properties of the title compound. The magnetic structure is defined by a propagation vector k=(1/2,1/2,0) and can be described as an array of ferromagnetic (20−1) layers, which couple antiferromagnetically to each other. All the Fe moments within a layer are aligned parallel (or anti-parallel) to the c-axis. The structural and magnetic features of this compound are discussed and compared with those of some other quaternary oxides A3Fe2WO9 (A=Ba, Sr, Pb).  相似文献   

15.
16.
Single-phase 1:2 B-site ordered perovskites are formed in the (1−x)A2+(Li1/4Nb3/4)O3-(x)A2+(Li2/5W3/5)O3 systems, A2+=Sr and Ca, within the range 0.238?x?0.333. The X-ray and electron diffraction patterns are consistent with a P21/c monoclinic supercell, , , , β≈125°, where the 1:2 order is combined with bbc+ octahedral tilting. Rietveld refinements of the ordered A(BI1/3BII2/3)O3 structures give a good fit to a model with BI occupied by Li and Nb, BII by W and Nb, and a general stoichiometry (Sr,Ca)(Li3/4+y/2Nb1/4−y/2)1/3(Nb1−yWy)2/3O3, y=0.9x=0.21-0.30. The Sr system also includes regions of stability of a 1:3 ordered phase for 0.0?x?0.111, and a 1:1 ordered double perovskite for 0.833?x?1.0. The formation of the non-stoichiometric 1:2 ordered phases is associated with the large site charge/size differences that can be accessed in these systems, and restricted by local charge imbalances at the A-sites for W-rich compositions. These concepts are used to generate stability maps to rationalize the formation of the known 1:2 ordered oxide perovskites.  相似文献   

17.
Magnetic properties of S=1/2 linear trimer cluster compounds A3Cu3(PO4)4 (A=Ca, Sr, and Pb) were investigated. Magnetic susceptibility data for the three compounds showed that paramagnetic copper spins form trimers with the total spin of 1/2 below about 45 K. Specific heat and magnetization measurements indicated that the trimer clusters undergo ferromagnetic long-range ordering at for A=Ca and antiferromagnetic long-range ordering at for A=Sr and for A=Pb. A3Cu3(PO4)4 exhibited 1/3-magnetization plateau at least up to magnetic field of 55 T at 1.3 and 4.2 K. A3Cu3(PO4)4 with A=Sr and Pb showed a spin-flop transition near 0.03 T in the antiferromagnetic state at 0.08 K. Specific heat data at magnetic fields clearly showed broad maxima at low temperatures due to the finite intra-chain interaction in one-dimensional arrays of the trimers.  相似文献   

18.
A powder sample of Sr3FeMoO7 was synthesized by solid-state reaction in reduced atmosphere (5% H2/Ar). At room temperature, Sr3FeMoO7 crystallizes in a typical Ruddlesden-Popper (n=2) structure in the space group I4/mmm, and . The structure refinement indicates that the Fe and Mo ions are randomly distributed in a single B-site with small fraction of B-site and oxygen vacancies. At low temperature, long-range magnetic interaction was observed. The antiferromagnetic magnetic interaction can be described with a large unit cell, and cm=cn, in the magnetic space group An′.  相似文献   

19.
A 3D framework assembly based on the Keggin tungstophosphate POM with silver (I) transition metal and N-ligand organic moiety and of formula [Ag(4,4′-bipy)](OH){[Ag(4,4′-bipy)]2[PAgW12O40]}·3.5H2O (1) (bipy=bipyridine) has been synthesized by hydrothermal method and structurally characterized. The crystal of 1 belongs to triclinic, space group P-1, Mr=3857.27, , , , α=85.7249(5)°, β=72.8795(5)°, γ=79.9543(5)°, , Z=1, . The final statistics based on F2 are GOF=1.045, R1=0.0326 and wR2=0.0843 for I>2σ(I). X-ray diffraction analysis revealed that the molecular structure of 1 consists of a neutral fragment {[AgI(4,4′-bipy)]2[PAgIWVI12O40]}, [AgI(4,4′-bipy)]+ cation, hydroxide anion and lattice water molecules. The {[AgI(4,4′-bipy)]2[PAgIWVI12O40]} subunits are interconnected through Ag(I) with bipyridine ligands, both surface bridging and terminal oxygen atoms of polyoxoanions (POMs) to represent a novel three-dimensional (3D) polymer with 1D elliptic channels. Meanwhile, the [AgI(4,4′-bipy)]+ cations are also linked each other to form 1D chains, and embedded in 1D elliptic channels.  相似文献   

20.
The magnetic and transport properties of ternary rare-earth chromium germanides RCr0.3Ge2 (R=Y and Tb-Er) have been determined. X-ray and neutron diffraction studies indicate that these compounds have the CeNiSi2-type structure (space group Cmcm) [1]. Magnetic measurements reveal the antiferromagnetic ordering below TN equal to 18.5 K (R=Tb), 11.8 K (Dy), 5.8 K (Ho) and 3.4 K (Er). From the neutron diffraction data the magnetic structures have been determined. For TbCr0.3Ge2 and DyCr0.3Ge2 at low temperatures the magnetic ordering can be described by two vectors k1=(,0,0) and k2=(,0,), and k1=(,0,0) and k2=(,0,), respectively. In HoCr0.3Ge2 and ErCr0.3Ge2 the ordering can be described by one propagation vector equal to (,,0) and (0,0,0.4187(2)), respectively. In DyCr0.3Ge2 some change in the magnetic ordering is observed at Tt=5.1 K. In temperature range from Tt to TN the magnetic ordering is given by one propagation vector k=(,0,0). YCr0.3Ge2 is a Pauli paramagnet down to 1.72 K which suggests that in the entire RCr0.3Ge2 series the Cr atoms do not carry magnetic moments. All compounds studied exhibit metallic character of the electrical conductivity. The temperature dependencies of the lattice parameters reveal strong magnetostriction effect at the respective Nèel temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号