首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The synthesis of filled skutterudite compounds (Ce or Y)yFexCo4-xSb12, through a solid state reaction using chloride of Ce or Y, high purity powder of Co, Fe, and Sb as starting materials, was investigated. (Ce or Y)yFexCo4-xSb12 (x = 0 1.0,y = 0 0.15) compounds were obtained at 850 1 123 K. The results of Rietveld analysis demonstrate that (Ce or Y)yFexCo4-xSb12 synthesized by a solid state reaction possesses a filled skutterudite structure. The filling fraction of Ce or Y obtained by Rietveld analysis agrees well with the composition obtained by chemical analysis. The lattice constant of CeyFexCo4-xSb12 increases with increasing substitution of Fe at Co sites, and with an increasing Ce filling fraction in the Sb-dodecahedron voids. The lattice thermal conductivity of (Ce or Y)yFexCo4-xSb12 decreases significantly with an increasing Ce or Y filling fraction in the voids and with substitution of Fe at Co sites.  相似文献   

2.
Nanocrystalline Sr2FeMoO6 (SFMO) belonging to the group of double perovskite oxides, was prepared by the sol-gel citrate method. The structural and microstructural characterization has been carried out with the help of X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. XRD of Sr2Fe1−xNixMoO6 (SFNMO) shows the formation of solid solution with average grain size of about 40 nm. A comparative study of gas sensing behaviour of Sr2FeMoO6 and Sr2Fe1−xNixMoO6 with reducing gases like hydrogen sulfide (H2S), liquid petroleum gas (LPG), hydrogen (H2), ethanol (C2H5OH) and carbon monoxide (CO) were also discussed. The sensitivity is calculated by measuring the change the resistance of the sensor material in the presence of gas. Among the different composition of x (x = 0.2, 0.3, 0.4, 0.5), Sr2Fe0.6Ni0.4MoO6 (x = 0.4) shows better response to H2S gas at 260 °C. Incorporation of palladium (Pd) improves the gas response, selectivity, response time and reduced the operating temperature from 260 to 220 °C for H2S gas.  相似文献   

3.
The structure and crystal phase of the nanocrystalline powders of Ni1−xZnxFe2O4 (0 ≤ x ≤ 0.5) mixed ferrite, synthesized by ethylene glycol mediated citrate sol-gel method, were characterized by X-ray diffraction and microstructure by transmission electron microscopy. Further studies by Fourier transform infrared spectroscopy were also conducted. Moreover, DC electrical properties of the prepared nanoparticles were studied by DC conductivity measurements. The response of prepared Ni1−xZnxFe2O4 mixed ferrites to different reducing gases (ethanol, hydrogen sulfide, ammonia, hydrogen and liquefied petroleum gas) was investigated. In particular, Ni0.6Zn0.4Fe2O4 composition exhibited high response to 100 ppm ethanol gas at 300 °C. Incorporation of palladium further improved the response, selectivity and response time of Ni0.6Zn0.4Fe2O4 to ethanol gas with the blue shift in the operating temperature by 25 °C.  相似文献   

4.
SrAlxFe12−xO19 (x=0-3.0) nanofibers with diameters about 100 nm have been prepared by electrospinning and subsequent heat treatment. With Al3+ ion content ranging from 0 to 3.0, the lattice parameters decrease due to Fe3+ ions substituted by smaller Al3+ ions and the average grain size calculated by the Scherrer's equation reduces from 65 to 37 nm. The magnetization shows a continuous reduction with the Al content and its value measured at 77 K is higher than at room temperature, which can be explained by Bloch's law. For the coercivity, its value initially increases, reaching a maximum value of 617 (298 K) and 547 kA m−1 (77 K) at x=2.0, and then reduces with the Al content further increase largely arising from the substituted Al3+ ion arrangement in different interstitial sites of the strontium ferrite unit cell.  相似文献   

5.
Polycrystalline Sr2−xNdxFeMoO6 (x=0.0, 0.1, 0.2, 0.4) materials have been synthesized by a citrate co-precipitation method and studied by neutron powder diffraction (NPD) and magnetization measurements. Rietveld analysis of the temperature-dependent NPD data shows that the compounds (x=0.0, 0.1, 0.2) crystallize in the tetragonal symmetry in the range 10-400 K and converts to cubic symmetry above 450 K. The unit cell volume increases with increasing Nd3+ concentration, which is an electronic effect in order to change the valence state of the B-site cations. Antisite defects at the Fe-Mo sublattice increases with the Nd3+ doping. The Curie temperature was increased from 430 K for x=0 to 443 K for x=0.4. The magnetic moment of the Fe-site decreases while the Mo-site moment increases with electron doping. The antiferromagnetic arrangement causes the system to show a net ferrimagnetic moment.  相似文献   

6.
The luminescent nanocrystalline Yb3+ and Er3+ codoped KLa(WO4)2 has been prepared by Pechini method. X-ray diffraction and transmission electron microscope were used to study the structure of the obtained samples. The average grain size of these samples depended on the annealing temperature, increasing with the increase of the temperature. The cell parameters and the crystallite size of KYbxEr0.02La0.98−x(WO4)2 nanocrystalline decreased with the increase of x value. Luminescence studies showed that the intensity of upconversion emission of the Yb3+ and Er3+ codoped samples was much stronger than that of the Er3+ single doped samples (pumped by 980 nm LD). The upconversion emission mechanisms suggested that all the three bands of upconversion emissions were two-photon process.  相似文献   

7.
A series of lithium europium double tungsto-molybdate phosphors LiEu(WO4)2−x(MoO4)x (x=0, 0.4, 0.8, 1.2, 1.6, 2.0) have been synthesized by solid-state reactions and their crystal structure, optical and luminescent properties were studied. As the molybdate content increases, the intensity of the 5D07F2 emission of Eu3+ activated at wavelength of 396 nm was found to increase and reach a maximum when the relative ratio of Mo/W is 2:0. These changes were found to be accompanied with the changes in the spectral feature, which can be attributed to the crystal field splitting of the 5D07F2 transition. As the molybdate content increases the emission intensity of the 615 nm peak also increases. The intense red-emission of the tungstomolybdate phosphors under near-UV excitation suggests them to be potential candidate for white light generation by using near-UV LEDs. In this study the effect of chemical compositions and crystal structure on the photoluminescent properties of LiEu(WO4)2−x(MoO4)x is investigated and discussed.  相似文献   

8.
The microstructure and phase stability of nanocrystalline mixed oxide LuxCe1−xO2−y (x=0-1) are described. Nano-sized (3-4 nm) oxide particles were prepared by the reverse microemulsion method. Morphological and structural changes upon heat treatment in an oxidizing atmosphere were studied by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman and Yb3+ emission spectroscopy, the latter ion being present as an impurity in the Lu2O3 starting material. Up to 950 °C, the samples were single phase, with structure changing smoothly with Lu content from fluorite type (F) to bixbyite type (C). For the samples heated at 1100 °C phase separation into coexisting F- and C-type structures was observed for 0.35<x<0.7. It was also found that addition of Lu strongly hinders the crystallite growth of ceria during heat treatment at 800 and 950 °C.  相似文献   

9.
New skutterudite compounds CaxCo4Sb12 (0<x?0.2) have been prepared by traditional metallurgical synthesis. The compounds have been characterized by X-ray powder diffraction (XRD), electron probe microanalysis (EPMA) and neutron powder diffraction. Rietveld refinement of the structures against neutron powder diffraction data (on Ca0.1Co4Sb12, , a=9.0429 Å, χ2=1.55; wRp=1.52) enabled the location of Ca in the voids of the skutterudite structure to be verified. The large displacement ellipsoid for Ca is consistent with “rattling” in the cage of the crystalline structure. XRD combined with EPMA analyses showed that the maximum occupancy of Ca atoms is about 0.2.  相似文献   

10.
The UV and IR spectra of CxF2x+1CHO (x = 1-4) were investigated using computational and experimental techniques. CxF2x+1CHO (x = 1-4) have broad UV absorption features centered at 300-310 nm. The maximum absorption cross-section increases significantly and shifts slightly to the red with increased length of the CxF2x+1 group: CF3CHO, 3.10 × 10−20 (300 nm); C2F5CHO, 6.25 × 10−20 (308 nm); C3F7CHO, 8.96 × 10−20 (309 nm); and C4F9CHO, 10.9 × 10−20 (309 nm). IR spectra for CxF2x+1CHO were recorded, calculated, and assigned. Results are discussed with respect to the literature data and to the atmospheric fate of CxF2x+1CHO.  相似文献   

11.
In this work, a study was undertaken about the structural and photoluminescent properties, at room temperature, of powder samples from the CaxSr1−xWO4 (x=0-1.0) system, synthesized by a soft chemical method and heat treated between 400 and 700 °C. The material was characterized using Infrared, UV-vis and Raman spectroscopy and XRD. The most intense PL emission was obtained for the sample calcined at 600 °C, which is neither highly disordered (400-500 °C), nor completely ordered (700 °C). Corroborating the role of disorder in the PL phenomenon, the most intense PL response was not observed for pure CaWO4 or SrWO4, but for Ca0.6Sr0.4WO4. The PL emission spectra could be separated into two Gaussian curves. The lower wavelength peak is placed around 530 nm, and the higher wavelength peak at about 690 nm. Similar results were reported in the literature for both CaWO4 and SrWO4.  相似文献   

12.
Perovskite type LaCoxFe1−xO3 nanoparticles was synthesized by a sol-gel citrate method. The structural, electrical and sensing characteristics of the LaCoxFe1−xO3 system were investigated. The structural characteristics were performed by using X-ray diffraction (XRD) and transmission electron microscopy (TEM) to examine the phase and morphology of the resultant powder. The XRD pattern shows nanocrystalline solid solution of LaCoxFe1−xO3 with perovskite phase. Electrical properties of synthesized nanoparticles are studied by DC conductivity measurement. The sensor shows high response towards ammonia gas in spite of other reducing gases when x = 0.8. The effect of 0.3 wt.% Pd-doped LaCo0.8Fe0.2O3 on the response and a recovery time was also addressed.  相似文献   

13.
Ag-doped n-type (Bi2Te3)0.9-(Bi2−xAgxSe3)0.1 (x=0-0.4) alloys were prepared by spark plasma sintering and their physical properties evaluated. When at low Ag content (x=0.05), the temperature dependence of the lattice thermal conductivity follows the trend of (Bi2Te3)0.9-(Bi2Se3)0.1; while at higher Ag content, a relatively rapid reduction above 400 K can be observed due possibly to the enhancement of scattering of phonons by the increased defects. The Seebeck coefficient increases with Ag content, with some loss of electrical conductivity, but the maximum dimensionless figure of merit ZT can be obtained to be 0.86 for the alloy with x=0.4 at 505 K, about 0.2 higher than that of the alloy (Bi2Te3)0.9-(Bi2Se3)0.1 without Ag-doping.  相似文献   

14.
Er3+-doped Y2Ti2O7 nanocrystals were fabricated by the sol-gel method. While the annealing temperature exceeds 757 °C, amorphous pyrochlore phase ErxY2−xTi2O7 transfers to well-crystallized nanocrystals, and the average crystal size increases from ∼70 to ∼180 nm under 800-1000 °C/1 h annealing. ErxY2−xTi2O7 nanocrystals absorbing 980 nm photons can produce the upconversion (526, 547, and 660 nm; 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2, respectively) and Stokes (1528 nm; 4I13/24I15/2) photoluminescence (PL). The infrared PL decay curve is single-exponential for Er3+ (5 mol%)-doped Y2Ti2O7 nanocrystals but slightly nonexponential for Er3+ (10 mol%)-doped Y2Ti2O7 nanocrystals. For 5 and 10 mol% doping concentrations, the mechanism of up-converted green light is the two-photon excited-state absorption. Much stronger intensity of red light relative to green light was observed for the sample with 10 mol% dopant. This phenomenon can be attributed to the reduced distance between Er3+-Er3+ ions, resulting in the enhancement of the energy-transfer upconversion and cross-relaxation mechanisms.  相似文献   

15.
The La(Mn0.5Co0.5)1−xCuxO3−δ series with x=0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 was synthesized by the Pechini method to obtain insight into the phase formation in the quasi-ternary LaMnO3-LaCoO3-“LaCuO3” system caused by the instability of LaCuO3 under ambient conditions. After sintering at 1100°C some remarkable results were obtained: LaMn0.3Co0.3Cu0.4O3−δ crystallized as a single phase in the orthorhombic perovskite structure typical of LaCuO3. Among the synthesized compositions this compound showed the highest electrical conductivity in air at 800°C (155 S cm−1) and also the highest thermal expansion coefficient (α30−800°C=15.4×10−6 K−1). The LaCuO3−δ composition also crystallized as a single phase but in a monoclinic structure although previous investigations have shown that other phases are preferably formed after sintering at 1100°C. The electrical conductivity and thermal expansion coefficient were the lowest within the series of compositions, i.e. 9.4 S cm−1 and 11.9×10−6 K−1, respectively.  相似文献   

16.
Thermoelectric properties of polycrystalline La1−xSrxCoO3, where Sr2+ is substituted in La3+ site in perovskite-type LaCoO3, have been investigated. Sr-doping increases the electrical conductivity (σ) of La1−xSrxCoO3, and also decreases the Seebeck coefficient (S) for 0.01?x?0.40. A Hall coefficient measurement reveals that the increase in electrical conductivity arises from increases in both carrier concentration and the Hall mobility. The decrease in the Seebeck coefficient is caused by a decrease in carrier effective mass as well as increase in carrier concentration. The highest power factor (σS2) is 3.7×10−4 W m−1 K−2 at 250 K for x=0.10. The thermal conductivity (κ) is about 2 W m−1 K−1 at 300 K for 0?x?0.04, and increases for x?0.05 because of an increase in heat transport by conductive carrier. The thermoelectric properties of La1−xSrxCoO3 are improved by Sr-doping, and the figure of merit (Z=σS2 κ−1) reaches 1.6×10−4 K−1 for x=0.06 at 300 K (ZT=0.048). For heavily Sr-doped samples, the thermoelectric properties diminish mainly because of the decrease in the Seebeck coefficient and the increase in thermal conductivity.  相似文献   

17.
The aim of this work was to determine structural parameters of the Y10−xLaxW2O21 (x=0-10) solid solution series and investigate their electric properties. Crystallographic data shows a gradual increase in symmetry with increasing La content, as the structure evolves from orthorhombic, Y10W2O21, towards the pseudo-cubic structure of Y5La5W2O21. The solubility limit of La2O3 was found to be 50% (x=5). Above this level two phases were observed, La6W2O15 and (La,Y)10+xW2−xO21−δ. The conductivity of Y rich samples was very low, with σ of the order 2×10−5-5×10−5 S cm−1 at 1000 °C, whilst ionic conductivity was observed for most La rich doped samples. The highest conductivity was observed for La10W2O21 and its doped analogues, at 1×10−3-5×10−3 S cm−1 at 1000 °C. Unit cell parameters were determined as a function of temperature from 0 to 1000°C, and thermal expansion of these materials was determined from temperature studies carried out at the Australian Synchrotron facility in Melbourne, Victoria, Australia.  相似文献   

18.
A comparative study of two Sn-based composite materials as negative electrode for Li-ion accumulators is presented. The former SnB0.6P0.4O2.9 obtained by in-situ dispersion of SnO in an oxide matrix is shown to be an amorphous tin composite oxide (ATCO). The latter Sn0.72[BPO4]0.28 obtained by ex-situ dispersion of Sn in a borophosphate matrix consists of Sn particles embedded in a crystalline BPO4 matrix. The electrochemical responses of ATCO and Sn0.72[BPO4]0.28 composite in galvanostatic mode show reversible capacities of about 450 and 530 mAh g−1, respectively, with different irreversible capacities (60% and 29%). Analysis of these composite materials by 119Sn Mössbauer spectroscopy in transmission (TMS) and emission (CEMS) modes confirms that ATCO is an amorphous SnII composite oxide and shows that in the case of Sn0.72[BPO4]0.28, the surface of the tin clusters is mainly formed by SnII in an amorphous interface whereas the bulk of the clusters is mainly formed by Sn0. The determination of the recoilless free fractions f (Lamb-Mössbauer factors) leads to the effective fraction of both Sn0 and SnII species in such composites. The influence of chemical composition and especially of the surface-to-bulk tin species ratio on the electrochemical behaviour has been analysed for several Snx[BPO4]1−x composite materials (0.17<x<0.91). The cell using the compound Sn0.72[BPO4]0.28 as active material exhibits interesting electrochemical performances (reversible capacity of 500 mAh g−1 at C/5 rate).  相似文献   

19.
A structural, magnetic and electronic study of the cobaltocuprate CoSr2Y2−xCexCu2Oδ (x=0.5-0.8) has been performed. All materials crystallise in the orthorhombic Cmcm symmetry space group in which chains of corner linked CoO4 tetrahedra run parallel to the 1 1 0 direction. An antiferromagnetic transition is observed for x=0.5-0.8; TM increases with x. A change in the dimensionality of the magnetic order occurs at x=0.8 as the interchain distance increases to a critical value. There is charge transfer between the cuprate planes and cobaltate layer as Ce doping increases, so that Co3+ is partially oxidised to Co4+ with a concomitant reduction in the valence of Cu. Superconductivity is not observed in any of the samples and a crossover from Mott to Efros and Shklovskii variable range hopping behaviour is evidenced as x increases from 0.5 to 0.8.  相似文献   

20.
La, Nd, Sm, and Dy-doped Sr2Bi4Ti5O18 (SBTi) ceramic samples have been prepared by the solid-state reaction method. The X-ray diffraction reveals that all of the ceramic samples are single phase compounds. Their remnant polarization (2Pr) increases at first, and then decreases with the increase of doping content. When doping content is 0.01, Sm and Dy-doped SBTi samples exhibit the maximum 2Pr of 18.2 and 20.1 μC/cm2, respectively. While La and Nd-doped SBTi samples display the maximum 2Pr value of 18.4 and 19.1 μC/cm2 with doping content of 0.05 and 0.10, respectively. The ferroelectric properties of Sr2Bi4−xLnxTi5O18 are found to be dominated by the competition of the decrease of oxygen vacancy concentration and the relief of structural distortion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号