首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microcrystalline ABi2Nb2O9 (A=Sr, Ba) photocatalysts were successfully synthesized by a citrate complex method. The as-prepared samples were characterized by the X-ray diffraction technique, BET surface area analysis, UV-vis diffuse reflectance spectrum, transmission electron microscopy, X-ray photoelectron spectroscopy and inductively coupled plasma-atomic emission spectrometry. The results indicated that single-phase orthorhombic SrBi2Nb2O9 could be obtained after being calcined above 650 °C, while BaBi2Nb2O9 was tetragonal. Based on the diffuse reflectance spectra, the band gaps of the obtained samples were calculated to be around 3.34-3.54 eV. For the photocatalytic redox reaction of methyl orange under UV-light irradiation, SrBi2Nb2O9 exhibited higher photocatalytic activity than that of BaBi2Nb2O9. The effects of the crystallinities, BET surface areas and crystal structures of the samples on the photocatalytic activities were discussed in detail.  相似文献   

2.
The formation of maghemite, γ-Fe2O3 nanoparticles has been studied by in situ X-ray powder diffraction. The maghemite was formed by thermal decomposition of an amorphous precursor compound made by reacting lauric acid, CH3(CH2)10COOH with Fe(NO3)3·9H2O. It has been shown that cubic γ-Fe2O3 was formed directly from the amorphous precursor and that vacancy ordering starts about 45 min later at 305 °C resulting in a tripled unit cell along the c-axis. The kinetics of grain growth was found to obey a power law with growth exponents n equal to 0.136(6) and 0.103(5) at 305 and 340 °C, respectively. Particles with average sizes of 12 and 13 nm were obtained in 86 and 76 min at 305 and 340 °C, respectively. The structure of cubic and vacancy ordered phases of γ-Fe2O3 was studied at 305 °C by Rietveld refinements.  相似文献   

3.
New niobium oxynitrides containing either magnesium or silicon were prepared at 1000 °C by ammonia nitridation of oxide precursors obtained via the citrate route. The products had rock-salt type crystal structures. Crystallinity was improved by annealing in 0.5 MPa N2 and the final compositions were (Nb0.95Mg0.05)(N0.92O0.08) at 1500 °C and (Nb0.87Si0.090.04)(N0.87O0.13) at 1200 °C. The magnesium and oxide ions partially co-substitute the niobium and nitride ions in the octahedral sites of the δ-NbN lattice, respectively. Silicon ions were also successfully doped together with oxide ions into the rock-salt type NbN lattice. The Si doped product exhibited relatively large displacement at the octahedral sites and was accompanied by a small amount of cation vacancies. Superconductivity was improved by annealing to obtain critical temperatures/volume fractions of Tc=17.6 K/100% for Mg- and Tc=16.2 K/95% for the Si-doped niobium oxynitrides.  相似文献   

4.
Garnet-structure related metal oxides with the nominal chemical composition of Li5La3Nb2O12, In-substituted Li5.5La3Nb1.75In0.25O12 and K-substituted Li5.5La2.75K0.25Nb2O12 were prepared by solid-state reactions at 900, 950, and 1000 °C using appropriate amounts of corresponding metal oxides, nitrates and carbonates. The powder XRD data reveal that the In- and K-doped compounds are isostructural with the parent compound Li5La3Nb2O12. The variation in the cubic lattice parameter was found to change with the size of the dopant ions, for example, substitution of larger In3+(rCN6: 0.79 Å) for smaller Nb5+ (rCN6: 0.64 Å) shows an increase in the lattice parameter from 12.8005(9) to 12.826(1) Å at 1000 °C. Samples prepared at higher temperatures (950, 1000 °C) show mainly bulk lithium ion conductivity in contrast to those synthesized at lower temperatures (900 °C). The activation energies for the ionic conductivities are comparable for all samples. Partial substitution of K+ for La3+ and In3+ for Nb5+ in Li5La3Nb2O12 exhibits slightly higher ionic conductivity than that of the parent compound over the investigated temperature regime 25-300 °C. Among the compounds investigated, the In-substituted Li5.5La3Nb1.75In0.25O12 exhibits the highest bulk lithium ion conductivity of 1.8×10−4 S/cm at 50 °C with an activation energy of 0.51 eV. The diffusivity (“component diffusion coefficient”) obtained from the AC conductivity and powder XRD data falls in the range 10−10-10−7 cm2/s over the temperature regime 50-200 °C, which is extraordinarily high and comparable with liquids. Substitution of Al, Co, and Ni for Nb in Li5La3Nb2O12 was found to be unsuccessful under the investigated conditions.  相似文献   

5.
Different substitutions, i.e. Sr2+, Ba2+, K+, Nb5+ and V5+, have been performed in the triclinic α-La2W2O9 structure in order to stabilise the high temperature and better ionic conductor cubic β-phase. This approach has been used to try to obtain a new series of ionic conductors with LAMOX-type structure without molybdenum and presumably better redox stability compared to β-La2Mo2O9. Nanocrystalline materials obtained by a freeze-drying precursor method at 600 °C exhibit mainly the β-La2W2O9 structure, however, the triclinic α-form is stabilised as the firing temperature increases and the crystallite size grows. Only high levels of Ba2+ and V5+ substitutions retained the cubic form at room temperature after firing above 1100 °C. However, these phases are metastable above 700 °C, exhibiting an irreversible transformation to the low temperature triclinic α-phase. The synthesis, structure, phase stability, kinetic of phase transformation and electrical conductivity of these materials have been studied in the present report.  相似文献   

6.
This study deals with the reduction of Fe3O4 by H2 in the temperature range of 210-950 °C. Two samples of Fe3O4 produced at 600 and 1200 °C, designated as Fe3O4(600) and Fe3O4(1200), have been used as starting material.Reduction of Fe3O4(600) by H2 is characterized by an apparent activation energy ‘Ea’ of 200, 71 and 44 kJ/mol at T < 250 °C, 250 °C < T < 390 °C and T > 390 °C, respectively. The important change of Ea at 250 °C could be attributed to the removal of hydroxyl group and/or point defects of magnetite. This is confirmed during the reduction of Fe3O4(1200). While transition at T ≈ 390 °C is probably due to sintering of the reaction products as revealed by SEM.In situ X-rays diffraction reduction experiments confirm the formation of stoichiometric FeO between 390 and 570 °C. At higher temperatures, non-stoichiometric wüstite is the intermediate product of the reduction of Fe3O4 to Fe.The physical and chemical modifications of the reduction products at about 400 °C, had been confirmed by the reduction of Fe3O4(600) by CO and that of Fe3O4(1200) by H2. A minimum reaction rate had been observed during the reduction of Fe3O4(1200) at about 760 °C. Mathematical modeling of experimental data suggests that the reaction rate is controlled by diffusion and SEM observations confirm the sintering of the reaction products.Finally, one may underline that the rate of reduction of Fe3O4 with H2 is systematically higher than that obtained by CO in the explored temperature range.  相似文献   

7.
The crystal structure and superconductive characteristics of the niobium-aluminum oxynitrides were investigated. Single-phase products were successfully obtained starting from a cation ratio of Nb0.89Al0.11. The as-nitrided product crystallized in a cation-deficient rock-salt type structure with a chemical formula of (Nb0.60Al0.080.32)(O0.21N0.79), while annealing at 1773 K under a nitrogen pressure of 0.5 MPa led to a highly crystallized product with a simple rock-salt type structure represented as (Nb0.89Al0.11)(O0.17N0.85). Upon post-annealing, both the critical temperature (Tc) and the superconductive volume fraction (VSC) of the oxynitride were significantly enhanced from Tc≈7 K and VSC=23% for the as-nitrided product to Tc=17.3 K and VSC=91% for the post-annealed product.  相似文献   

8.
A new four-layer Aurivillius phase Bi2SrNa2Nb4O15 has been synthesized by solid-state reaction of Bi2SrNb2O9 and NaNbO3 at 1100 °C. The detailed structure determination of Bi2SrNa2Nb4O15 performed by powder X-ray diffraction (XRD) shows that it crystallizes in the space group I4/mmm [a∼3.9021(1) Å, c∼40.7554(10) Å]. Protonated form of Bi2SrNa2Nb4O15 was obtained by the substitution of bismuth oxide sheets with protons via acid treatment. The conversion into the protonated forms was achieved easily using 6 M HCl at room temperature. Preservation of the structure of the perovskite-like slabs and contraction in the c-axis were confirmed by X-ray analysis. The compositions of the resulting products were determined to be H1.8[Sr0.8Bi0.2Na2Nb4O13] by X-ray fluorescence spectroscopy (XFS) and thermogravimetry.  相似文献   

9.
The structure of Bi5Nb3O15 was investigated by refinement of the powder neutron diffraction pattern as well as by structural change through acid treatment and subsequent treatments of an acid-treated product with n-alkylamines. Rietveld refinement suggests that Bi5Nb3O15 adopts a mixed-layer Aurivillius-related phase structure, [Bi2O2]+[NbO4]+[Bi2O2]+[BiNb2O7] [Pnc2 (space group No. 30)] with a=2.1011(4), b=0.5473(1) and c=0.5463(1) nm. After the acid treatment of Bi5Nb3O15 with 3 mol/L HCl, a new reflection (at 2.25 nm after drying at room temperature or at 1.89 nm after drying at 120 °C) appeared in the X-ray diffraction (XRD) pattern in addition to the reflections due to Bi5Nb3O15. Upon acid treatment, a part of the Bi ions were lost and essentially no Nb ions were dissolved during acid treatment to give a Bi/Nb molar ratio of 1.4. The TG curves of the acid-treated product showed mass loss (ca. 4 mass%) in the range of 300-600 °C. It was also demonstrated that the particle shapes did not change upon acid treatment. The reaction of the acid-treated product (after drying at room temperature) with n-alkylamines led to a shift of the newly appearing reflection to a lower angle, and the d-value of the low-angle reflection increased linearly in accordance with the increment of the number of carbon atoms in n-alkylamines. These results indicate that the [Bi2O2] sheet in Bi5Nb3O15 was partially leached by acid treatment to form a layered compound H4BiNb3O11·xH2O, capable of accommodating n-alkylamines in the interlayer space, and its anhydrous form, H4BiNb3O11, upon drying. Based on the variation in the interlayer distance upon intercalation of n-alkylamines into the acid-treated product, the structure of the acid-treated product can be suggested to comprise alternately stacked protonated [BiNb2O7] and [NbO4] sheets, a result consistent with the Rietveld refinement of Bi5Nb3O15.  相似文献   

10.
The aim of this work was to determine structural parameters of the Y10−xLaxW2O21 (x=0-10) solid solution series and investigate their electric properties. Crystallographic data shows a gradual increase in symmetry with increasing La content, as the structure evolves from orthorhombic, Y10W2O21, towards the pseudo-cubic structure of Y5La5W2O21. The solubility limit of La2O3 was found to be 50% (x=5). Above this level two phases were observed, La6W2O15 and (La,Y)10+xW2−xO21−δ. The conductivity of Y rich samples was very low, with σ of the order 2×10−5-5×10−5 S cm−1 at 1000 °C, whilst ionic conductivity was observed for most La rich doped samples. The highest conductivity was observed for La10W2O21 and its doped analogues, at 1×10−3-5×10−3 S cm−1 at 1000 °C. Unit cell parameters were determined as a function of temperature from 0 to 1000°C, and thermal expansion of these materials was determined from temperature studies carried out at the Australian Synchrotron facility in Melbourne, Victoria, Australia.  相似文献   

11.
The citrate-nitrate gel combustion route was used to prepare SrFe2O4(s), Sr2Fe2O5(s) and Sr3Fe2O6(s) powders and the compounds were characterized by X-ray diffraction analysis. Different solid-state electrochemical cells were used for the measurement of emf as a function of temperature from 970 to 1151 K. The standard molar Gibbs energies of formation of these ternary oxides were calculated as a function of temperature from the emf data and are represented as (SrFe2O4, s, T)/kJ mol−1 (±1.7)=−1494.8+0.3754 (T/K) (970?T/K?1151). (Sr2Fe2O5, s, T)/kJ mol−1 (±3.0)=−2119.3+0.4461 (T/K) (970?T/K?1149). (Sr3Fe2O6, s, T)/kJ mol−1 (±7.3)=−2719.8+0.4974 (T/K) (969?T/K?1150).Standard molar heat capacities of these ternary oxides were determined from 310 to 820 K using a heat flux type differential scanning calorimeter (DSC). Based on second law analysis and using the thermodynamic database FactSage software, thermodynamic functions such as ΔfH°(298.15 K), S°(298.15 K) S°(T), Cp°(T), H°(T), {H°(T)-H°(298.15 K)}, G°(T), free energy function (fef), ΔfH°(T) and ΔfG°(T) for these ternary oxides were also calculated from 298 to 1000 K.  相似文献   

12.
Intercalation behavior of n-alkylamines into a protonated form of an A-site defective layered perovskite H2W2O7 has been investigated. Results from XRD indicate these materials are layered with the corresponding interlayer spacing governed by the n-alkylamine chain length, and a reversible intercalation and deintercalation property is observed among these intercalation compounds. The IR spectra of the intercalation compounds with n-alkylamines clearly show that n-alkyl chains possess an all-trans conformation, and H2W2O7 accommodate n-alkylamines (CnH2n+1NH2: n=3, 4, 7, 8, 12, 16) to form intercalation compounds via an acid-base mechanism. A linear relationship between the interlayer distance and the number of carbon atoms in n-alkyl chains is observed to show a bilayer arrangement of the n-alkyl chains with a tilt angle of ∼71.6°. Elemental analysis studies reveal that the amounts of intercalated n-alkylamines are about 2.0 mol per [W2O7]. Despite the surface geometry of H2W2O7 is almost identical to those of layered perovskites H2[An−1BnO3n+1], the amounts of intercalated n-alkylamines of them are different. A reasonable explanation is given through our research.  相似文献   

13.
The new phases Ba2LaMNb4O15: M=Mn, Fe were prepared by solid state reaction at 1100 °C. They have the tetragonal tungsten bronze structure, space group P4/mbm, at room temperature. The two octahedral sites show partial order of M and Nb with preferential occupancy of the smaller B(1) sites by M. Both phases have high permittivities 90±15 over the range 10-320 K. Ba2LaFeNb4O15 is highly insulating with bulk conductivity ?10−8 ohm−1 cm−1 at 25 °C and tan δ?0.001 over the range 100-320 K and at 105 Hz. Solid solutions between these new phases and the compositionally and structurally related relaxor ferroelectric Ba2LaTi2Nb3O15 show gradual loss of ferroelectric behaviour attributed to replacement of polarisable Ti4+ by a mixture of (Mn, Fe)3+ and Nb5+.  相似文献   

14.
A novel microwave dielectric powder with composition of Ca2Zn4Ti16O38 was synthesized through a citrate sol-gel process. The development of crystalline phases with heat-treating temperature for the gel derived powders was evaluated by using thermo-gravimetric analysis and X-ray powder diffraction analysis techniques. The pure phase of Ca2Zn4Ti16O38 with crichtonite crystal structure was obtained at relatively low temperature of 1000 °C. The synthesized powder has high reactivity and the dense ceramics with single crystalline phase were obtained at low sintering temperature of 1100 °C. Impedance spectroscopy and microwave dielectric measurements on sintered samples showed the present compound to be a modest dielectric insulator with excellent dielectric properties of εr∼47-49, Qf value ∼27,800-31,600 GHz and τf∼+45 to +50 ppm/°C. It shows comparable microwave dielectric properties to other moderate-permittivity microwave dielectrics, but much lower sintering temperature of 1100 °C.  相似文献   

15.
A perovskite-type BaCu1/3Nb2/3O3 was prepared by high temperature reaction using BaCO3, CuO and Nb2O5. The X-ray powder diffraction pattern of this compound was indexed with the tetragonal cell with the lattice parameters of a=4.0464(4) and c=4.1807(4) Å (c/a=1.033). This compound had the tetragonal perovskite-type structure in which the B site was occupied statistically by Nb and Cu atoms. From high temperature X-ray powder diffraction patterns this compound had a phase transition from the tetragonal to cubic symmetry in the temperature range of 500-600 °C. The P-E and S-E hysteresis loops occurred at room temperature and the apparent maximum in the temperature dependence of the dielectric constant was observed at 520 °C. The temperature dependence of the inverse of magnetic susceptibility exhibited paramagnetic behavior.  相似文献   

16.
Alkyl and dialkylammonium tetrafluoroborate promoted cis-trans isomerization of 1,3,5-trimethyl-1,3,5-triphenylcyclotrisiloxane (1) in DMSO-d6 were studied. The isomerization equilibrium constant K are within the range of 3.74-3.30 from 22 to 47 °C. Thermodynamic parameters of ΔH° and ΔS° for the isomerization were −0.95 kcal/mol and −0.59 cal/mol-K respectively. The isomerization rate is first order in [cis-1] and second order in [RnNH4−nBF4]. Both components of RnNH4−n+ and BF4 are essential for the catalytic cis-trans isomerization. The catalytic strength follows the decreasing order of +H3N(CH2)6NH3+>n-C8H17NH3+>n-C16H33NH3+>Me3CNH3+>PhCH2NH3+>Et2NH2+?Ph2CHNH3+, Et3NH+. Inversion region was observed in the plot of ln(kf/T) versus (1/T) with the ceiling located at around 38 °C. The positive activation enthalpy of 9 kcal/mol was estimated at 22-32 °C. The activation enthalpy turns to be slightly negative at T>38 °C.  相似文献   

17.
Hyphenation of thermogravimetric analyzer (TGA) and thermo-Raman spectrophotometer for in situ monitoring of solid-state reaction in oxygen atmosphere forming NiO-Al2O3 catalyst nanoparticles is investigated. In situ thermo-Raman spectra in the range from 200 to 1400 cm−1 were recorded at every degree interval from 25 to 800 °C. Thermo-Raman spectroscopic studies reveal that, although the onset of formation is around 600 °C, the bulk NiAl2O4 forms at temperatures above 800 °C. The X-ray diffraction (XRD) spectra and the scanning electron microscopy (SEM) images of the reaction mixtures were recorded at regular temperature intervals of 100 °C, in the temperature range from 400 to 1000 °C, which could provide information on structural and morphological evolution of NiO-Al2O3. Slow controlled heating of the sample enabled better control over morphology and particle size distribution (∼20-30 nm diameter). The observed results were supported by complementary characterizations using TGA, XRD, SEM, transmission electron microscopy, and energy dispersive X-ray analysis.  相似文献   

18.
The preparation of trimanganese tetroxide (Mn3O4) nanocrystallites from γ-MnOOH nanowires under mild conditions has been achieved by two steps: first, γ-MnOOH nanowires with a mean diameter of about 12 nm and lengths of up to several micrometers were directly prepared via hydrothermal reaction between KMnO4 and toluene in water at 180°C for 24 h; then, pure Mn3O4 nanocrystallites could be obtained by solvothermal treatment of the γ-MnOOH nanowires in ethylenediamine (EDA) and ethylene glycol (EG) at 150°C for 24 h. It was found that the Mn3O4 product obtained in EDA comprised well-defined nanocrystallites with the size in the range of 15-35 nm, while the one obtained in EG consisted of aggregated nanoparticles with the size of less than 18 nm.The possible formation mechanism of nanocrystalline Mn3O4 in EDA and EG and reasons for the different effects of various solvents on the products were also proposed.  相似文献   

19.
Single crystals of the thallium ruthenium pyrochlore have been grown by flux method under high oxygen pressure. The growth conditions were determined by direct observations using in situ powder X-ray diffraction (XRD) method under high pressure and high temperature. The crystals were grown using NaCl-KCl flux at 1350 °C and B2O3 flux at 1150 °C. High growth temperature of 1350 °C for the NaCl-KCl flux caused Pt contamination from the crucible and oxygen deficiency for the crystals obtained. The crystal growth using B2O3 flux proceeded at lower temperature by grain growth with material transfer through B2O3. The crystal obtained was characterized by single-crystal XRD method, and was found to have a stoichiometric composition, Tl2Ru2O7−δ (δ=0), with a structural phase transition around 120 K. The grain growth technique with B2O3 is efficient for high-temperature single-crystal growth under high pressure.  相似文献   

20.
By hydrothermal reaction of In2O3 with H2C2O4·2H2O in the presence of H3BO3 at 155 °C, an open-framework three-dimensional indium oxalate of formula [In(OH)(C2O4)(H2O)]3·H2O (1) has been obtained. The compound crystallizes in the trigonal system, space group R3c with , , , Z=6, R1=0.0352 at 298 K. The small pores in 1 are filled with water molecules. It loses its filled water at about 180 °C without the change of structure, then the bounded water at 260 °C, and completely decompounds at 324 °C. The residue is confirmed to be In2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号