首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 908 毫秒
1.
The citrate-nitrate gel combustion route was used to prepare SrFe2O4(s), Sr2Fe2O5(s) and Sr3Fe2O6(s) powders and the compounds were characterized by X-ray diffraction analysis. Different solid-state electrochemical cells were used for the measurement of emf as a function of temperature from 970 to 1151 K. The standard molar Gibbs energies of formation of these ternary oxides were calculated as a function of temperature from the emf data and are represented as (SrFe2O4, s, T)/kJ mol−1 (±1.7)=−1494.8+0.3754 (T/K) (970?T/K?1151). (Sr2Fe2O5, s, T)/kJ mol−1 (±3.0)=−2119.3+0.4461 (T/K) (970?T/K?1149). (Sr3Fe2O6, s, T)/kJ mol−1 (±7.3)=−2719.8+0.4974 (T/K) (969?T/K?1150).Standard molar heat capacities of these ternary oxides were determined from 310 to 820 K using a heat flux type differential scanning calorimeter (DSC). Based on second law analysis and using the thermodynamic database FactSage software, thermodynamic functions such as ΔfH°(298.15 K), S°(298.15 K) S°(T), Cp°(T), H°(T), {H°(T)-H°(298.15 K)}, G°(T), free energy function (fef), ΔfH°(T) and ΔfG°(T) for these ternary oxides were also calculated from 298 to 1000 K.  相似文献   

2.
The temperature dependences of the heat capacities of 5-vinyltetrazole and poly-5-vinyltetrazole were measured by adiabatic vacuum calorimetry over the temperature range 6-(350–370) K with errors of ~0.2%. The results were used to calculate the thermodynamic functions of the compounds, C p ° , H °(T) - H °(0), S °(T), and G °(T) - H °(0), over the temperature range from T → 0 to 350–370 K. The energy of combustion of 5-vinyltetrazole and poly-5-vinyltetrazole was measured in an isothermic-shell static bomb calorimeter. The standard enthalpies of combustion Δ c H ° and thermodynamic characteristics of formation Δf H °, Δf S °, and Δf G ° at 298.15 K and p = 0.1 MPa were calculated. The results were used to determine the thermodynamic characteristics of polymerization of 5-vinyltetrazole over the temperature range from T → 0 to 350 K.  相似文献   

3.
Fe[(CH3(CH2)2PO3)(H2O)] (1) and Fe[(CH3(CH2)17PO3)(H2O)] (2) were synthesized by reaction of FeCl2·6H2O and the relevant phosphonic acid in water in presence of urea and under inert atmosphere. The compounds were characterized by elemental and thermogravimetric analyses, UV-visible and IR spectroscopy. The crystal structure of (1) was determined from X-ray single crystal diffraction studies at room temperature: monoclinic symmetry, space group P21, , , , and β=98.62(3)°. The compound is lamellar and the structure is hybrid, made of alternating inorganic and organic layers along the c direction. The inorganic layers consist of Fe(II) ions octahedrally coordinated by five phosphonate oxygen atoms and one from the water molecule, separated by bi-layers of propyl groups. A preliminary structure characterization of compound (2) suggests a similar layered structure, but with an interlayer spacing of 40.3 Å. The magnetic properties of the compounds were both studied by a dc and ac SQUID magnetometer. Fe[(CH3(CH2)2PO3)(H2O)] (1) obeys the Curie-Weiss law at temperatures above 50 K (, ), indicating a Fe +II oxidation state, a high-spin d6 (S=2) electronic configuration and an antiferromagnetic exchange couplings between the near-neighbouring Fe(II) ions. Below , Fe[(CH3(CH2)2PO3)(H2O)] exhibits a weak ferromagnetism. The critical temperature of has been determined by ac magnetic susceptibility measurements. Compound (2) shows the same paramagnetic behaviour of the iron (II) propyl derivative. The values of C and θ were found to be and −44 K, respectively, thus suggesting the presence of Fe +II ion in the S=2 spin state and antiferromagnetic interactions between Fe(II) ions at low temperatures. Zero-field and field cooled magnetic susceptibility vs. T plots do not overlap below , suggesting the presence of an ordered magnetic state. The critical temperature, TN, has been located by the peaks at from the ac susceptibility (χ′and χ″) vs. T plots. Below TN hysteresis loops recorded in the temperature region show an S-shape, while below 15 K assume an ellipsoid form. They reveal that compound (2) is a weak ferromagnet. The critical temperature TN in these layered Fe(II) alkylphosphonates is independent of the distance between the inorganic layers.  相似文献   

4.
Three new alkaline earth-zirconium oxalates M2Zr(C2O4)4·nH2O have been synthesized by precipitation methods for M=Ba, Sr, Ca. For each compound the crystal structure was determined from single crystals obtained by controlled diffusion of M2+ and Zr4+ ions through silica gel containing oxalic acid. Ba2Zr(C2O4)4·7H2O, monoclinic, space group C2/c, a=9.830(2), b=29.019(6), , , , Z=4, R=0.0427; Sr2Zr(C2O4)4·11H2O, tetragonal, space group I41/acd, a=16.139(4), , ,Z=8, R=0.0403; Ca2Zr(C2O4)4·5H2O, orthorhombic, space group Pna21, a=8.4181(5), b=15.8885(8), , , Z=4, R=0.0622. The structures of the three compounds consist of chains of edge-shared MO6(H2O)x (x=2 or 3) polyhedra connected to ZrO8 polyhedra through oxalate groups. Depending on the arrangement of chains, the ZrO8 polyhedron geometry (dodecahedron or square antiprism) and the connectivity, two types of three-dimensional frameworks are obtained. For the smallest M2+ cations (Sr2+, Ca2+), large tunnels are obtained, running down the c direction of the unit cell, which can accommodate zeolitic water molecules. For the largest Ba2+ cation, the second framework is formed and is closely related to that of Pb2Zr(C2O4)4·nH2O. The decomposition at 800°C into strontium carbonate, barium carbonate or calcium oxide and MZrO3 (M=Sr, Ba, Ca) perovskite is reported from thermal analyses studies and high temperature X-ray powder diffraction.  相似文献   

5.
《Solid State Sciences》2012,14(10):1496-1502
The magnetization M(T,H), specific heat Cp(T,H), electrical resistivity ρ(T), magnetoresistance MR(T,H), thermal conductivity κ(T) and thermopower S(T) measurements were performed on the antiferromagnetic compound Ce5Ni2Si3 with the Néel temperature TN = 5.7 K. The estimated effective moment μeff is close to the free ion value of Ce in its trivalent state. The negative sign of the paramagnetic Curie temperature θp indicate the antiferromagnetic nature of the magnetic ordering. The variation of magnetic resistivity ρmag with temperature in Ce5Ni2Si3 can be explained by a competition of the crystal electric field (CEF) splitting, the Kondo effect and the magnetic order. Based on the thermopower and employing a simple single-ion Kondo model the Kondo temperature have been estimated. Magnetocaloric effect is small but shows a sign change, which may be caused by a metamagnetic behavior.  相似文献   

6.
The thermodynamic properties of a series of polystyrene samples with different molecular weights (M w was varied from 2.5·103 to 6.57·104) were studied by precision adiabatic vacuum, high-accuracy dynamic, and combustion calorimetry: temperature dependences of the heat capacity in a wide temperature range, thermodynamic characteristics of glass transition and glassy state under standard pressure, and energy of combustion. The thermodynamic functions C p (T), H (T) - H (0), S (T) - S (0), and G (T) - H (0) of polystyrene with different molecular weights, enthalpies of combustion Δc H , thermodynamic parameters of formation from simple substances Δf H , Δf S , and Δf G at T = 298.15 K, and parameters of their synthesis from monomers were calculated from the experimental data. The temperature dependences of the heat capacity for a region of 0–380 K, glass transition temperatures, and thermodynamic characteristics of formation and synthesis of polystyrene depending on its molecular weight were examined.  相似文献   

7.
Low-temperature heat capacity of polynuclear Fe(HTrz)3(B10H10)·H2O (I) and trinuclear [Fe3(PrTrz)6(ReO4)4(H2O)2](ReO4)2 (II) spin crossover coordination compounds was measured in 80–300 K temperature range using a vacuum adiabatic calorimeter. For I, an anomaly of heat capacity with a maximum at T trs=234.5 K (heating mode) was observed, Δtrs H=10.1±0.2 kJ mol?1 Δtrs S=43.0±0.8 J mol? K?1. For II, a smooth anomaly between 150 and 230 K was found, Δtrs H=2.5±0.25 kJ mol?1 Δtrs S=13.6±1.4 J mol? K?1. Anomalies observed in both compounds correspond to 1A1?5T2 spin transition.  相似文献   

8.
Two zinc phosphates (ZnPO), [H2(N2C9H20)]·[Zn(H2PO4)4] (I) and [H2(N2C9H20)]2·[Zn2(HPO4)3(H2PO4)2]·H2O (II), are synthesized under hydrothermal conditions using 4-amino-2.2.6.6-tetramethylpiperidine as organic template. I crystallizes in space group with , , , α=92.57(1)°, β=89.76(1)°, γ=102.16(2)°, and Z=2. Its structure, refined to R=0.029 and Rw=0.076 for 4279 independent reflections, consists of [Zn(H2PO4)4]2− clusters held together through strong hydrogen bonds to form pseudo-layers between which the doubly protonated amine molecules are inserted. II is monoclinic, C2, with , , , β=103.72(5)°, and Z=4 (R=0.079, Rw=0.268, 2477 independent reflections). The structure of II consists of [Zn2(HPO4)3(H2PO4)2]4− inorganic (2D) layers built up from vertex-sharing [ZnO4] and [(H2/H)PO4] tetrahedra. Organic cations and water molecules ensure the connection between these layers via hydrogen bonds. It is shown that numerous (1D), (2D), e.g., [H2(N2C9H20)]2·[Zn2(HPO4)3(H2PO4)2]·H2O, and (3D) (ZnPO) result from the condensation of the [Zn(H2PO4)4]2− clusters.  相似文献   

9.
Two new open-framework zinc phosphites, [M(C6N4H18)][Zn3(HPO3)4] (M=Ni, Co), have been prepared under hydrothermal conditions. Single-crystal X-ray diffraction analysis shows that [Ni(C6N4H18)][Zn3(HPO3)4] (1) and [Co(C6N4H18)][Zn3(HPO3)4] (2) are isostructural and both crystallize in the monoclinic space group C2/c with , , , β=109.83(3)°, Z=4, R1=0.0408 (I>2σ(I)), and wR2=0.1104 (all data) for 1, and , , , β=109.328(2)°, Z=4, R1=0.0380 (I>2σ(I)), and wR2=0.1093 (all data) for 2. The structures of 1 and 2 are built up from strictly alternating ZnO4 tetrahedra and HPO3 pseudo-pyramids linked through oxygen vertices to form the three-dimensional (3-D) open-frameworks with multi-directional intersecting 12-membered ring (12-MR) channels. The M(TETA) (M=Ni, Co) complexes self-assembled under hydrothermal system connect with the inorganic host via M-O-P linkages and interact with inorganic framework through weak H-bonds. The two compounds show intense photoluminescence upon photoexcitation at 235 nm.  相似文献   

10.
A new mixed-valence [Mn9] cluster of formulae [Mn9O(OH)3Cl4(N3)3(hmp)6(dpkd)3]·1.5CH3CN·3H2O (1·1.5CH3CN·3H2O, where hmp and dpkd2− are the anion of 2-hydroxymethylpyridine and the dianion of the gem-diol form of the dpk, respectively) has been synthesized and characterized by single-crystal X-ray diffraction, IR spectra, elemental analysis and magnetic measurements. Single-crystal structural analysis shows that complex 1 contains a [Mn9] core with a new structural topology in the Mn clusters, in which the centered six MnIII atoms compose a trigonal antiprism and the peripheral residual three MnII atoms can be seen as the skirt hem of this antiprism. DC magnetic susceptibility studies indicate that the overall antiferromagnetic interactions between Mn ions are present in the cluster. Fitting the data of magnetization and extrapolation of the χMT suggest the spin ground states of S = 3.5, and no out-of-phase (χM″) signals are present in the alternating current (AC) susceptibility.  相似文献   

11.
A new borophosphate compound with the composition (NH4) χ Mn((3?χ)/2)(H2O)2 [BP2O8]·(1?x)H2O was prepared under mild hydrothermal conditions and characterized by X-ray powder diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) methods. The title compound was synthesized from MnCl2·2H2O, H3BO3, and (NH4)2HPO4 with variable molar ratios by heating at 180 °C for 7 days in an autoclave. The X-ray diffraction data of the water insoluble polycrystalline powder was indexed using the TREOR program in hexagonal system with the unit cell parameters of a = 9.5104, c = 15.7108 Å, Z = 6 and the space group P65 (No.176). (NH4) χ Mn((3?χ)/2)(H2O)2 [BP2O8]·(1?x)H2O is isostructural with (NH4) χ M ((3?χ) 2)/II (H2O)2 [BP2O8]·(1?x)H2O (MII = Co, Cd, Mg; x = 0.5–1). Its unit cell parameters and hkl values were in good agreement with the other isostructural compounds. This is the first report presenting both the synthetic details and the indexed X-ray powder diffraction pattern of this compound along with the characterization by FTIR, thermal gravimetric analysis, scanning electron microscopy and EPR.   相似文献   

12.
Attempts have been made to determine the enthalpy and entropy of transfer of H+ ion from water to mixed solvents using the calorimetric data of earlier experiments. The results are in qualitative agreement with the facts that ΔH t 0 (H+) passes through an exothermic maximum andTΔS t 0 passes through a minimum at about 20 to 30 wt% of organic solvent indicating the initial structure formation and the ultimate breakdown of the solvent structure with the addition of organic solvent.  相似文献   

13.
The uranyl vanadates A2(UO2)3(VO4)2O (A=Li, Na) have been synthesized by solid-state reaction and the structure of the Li compound was solved from single-crystal X-ray diffraction. The crystal structure is built from chains of edge-shared U(2)O7 pentagonal bipyramids alternatively parallel to - and -axis and further connected together to form a three-dimensional (3-D) arrangement. The perpendicular chains are hung on both sides of a sheet parallel to (001), formed by U(1)O6 square bipyramids connected by VO4 tetrahedra, and derived from the autunite-type sheet. The resulting 3-D framework creates non-intersecting channels running down the - and -axis formed by empty face-shared oxygen octahedra, the Li+ ions are displaced from the center of the channels and occupy the middle of one edge of the common face. The peculiar position of the Li+ ion together with the full occupancy explain the low conductivity of Li2(UO2)3(VO4)2O compared with that of Na(UO2)4(VO4)3 containing the same type of channels half occupied by Na+ ions in the octahedral sites.Crystallographic data for Li2(UO2)3(VO4)2O: tetragonal, space group I41/amd, , , , Z=4, ρmes=5.32(2) g/cm3, ρcal=5.36(3) g/cm3, full-matrix least-squares refinement basis on F2 yielded, R1=0.032, wR2=0.085 for 37 refined parameters with 364 independent reflections with I?2σ(I).  相似文献   

14.
Crystal structures and magnetic properties of quaternary oxides Ba3MIr2O9 (M=Mg, Ca, Sc, Ti, Zn, Sr, Zr, Cd and In) were investigated. Rietveld analyses of their X-ray diffraction data indicate that they adopt the 6H-perovskite-type structure with space group P63/mmc or, in the case of M=Ca, Sr and Cd, a monoclinically distorted structure with space group C2/c. The Ir valence configurations are (M=Mg, Ca, Zn, Sr and Cd), (M=Sc and In) and (M=Ti and Zr). Magnetic susceptibility and specific heat measurements were carried out. In the , the Ir5+ ions have a non-magnetic ground state and the magnetic behavior for these compounds is explained by the Kotani's theory. For , the effective magnetic moment of these compounds is significantly small, although the Ir4+ ions have magnetic moment, which indicates the existence of the strong antiferromagnetic interaction between Ir4+ ions in the Ir4+2O9 face-shared bioctahedra. In the case of , a specific heat anomaly was found at about 10 K (M=Sc) and 1.6 K (M=In), which suggests the magnetic ordering of the magnetic moments of Ir4+ in the (Ir4+Ir5+)O9 bioctahedra.  相似文献   

15.
16.
For the first time, the heat capacity $ C_{\text{p}}^{^\circ } $ of poly(2-ethylhexyl acrylate) has been studied in an adiabatic vacuum calorimeter between 7 and 350 K, the standard thermodynamic functions: heat capacity $ C_{\text{p}}^{^\circ } $ (T), enthalpy H°(T) ? H°(0), entropy S°(T) ? S°(0), Gibbs function G°(T) ? H°(0) have been calculated from T → 0 to 350 K. The energy of combustion Δc U of the compound under study has been measured in a calorimeter with a stationary bomb and an isothermal shell. The standard enthalpy of combustion Δc H° and thermodynamic parameters of formation—enthalpy Δf H°, entropy Δf S°, Gibbs function Δf G°—at T = 298.15 K have been calculated. The results have been used to calculate the thermodynamic characteristics of 2-ethylhexyl acrylate bulk polymerization into poly(2-ethylhexyl acrylate) over the range from T → 0 to 350 K.  相似文献   

17.
18.
A second form of the literature-known layered weak ferromagnet Fe[(CH3PO3)(H2O)] has been isolated. The crystal structure determination of this new form (2) has been carried out at T=300, 200 and 130 K. It crystallizes in the orthorhombic space group Pmn21: a=5.7177(11), b=8.8093(18), , while form (1) crystallizes in the space group Pna21: a=17.58(2), b=4.814(1), . Mössbauer spectroscopy on form (2) has been performed in the temperature range 4-300 K; and, at , a drastic change in the quadrupole splitting (ΔE) and a broadening of the doublet components is noticed. But surprisingly, on cooling the crystal, no structural change is observed, which could account for the increase in ΔE. Below , 57Fe spectra transform into hyperfine splitting patterns which reveal a magnetically ordered state in agreement with the results of earlier magnetic susceptibility studies.  相似文献   

19.
20.
Ferromagnetic-phase transition in spinel-type CuCr2Te4 has been clearly observed. CuCr2Te4 is a telluride-spinel with the lattice constant , which has been synthesized successfully. The heat capacity exhibits a sharp peak due to the ferromagnetic-phase transition with the Curie temperature . This value of TC corresponds exactly to that of the negative peak of dM/dT in low field of 1.0 Oe. The magnetic susceptibility shows the Curie-Weiss behavior between 380 and 650 K with the effective magnetic moment /Cr-ion and the Weiss constant . The low temperature magnetization indicates the spin-wave excitations, where the existence of first term of Bloch T3/2 law and the next T5/2 term are verified experimentally. This spin-wave excitation is detected up to approximately 250 K which is a fairly high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号