首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microcrystalline solid dysprosium(III) hexacyanoferrate(II) was synthesized by co-precipitation in aqueous solution. The resulting solid has been studied by Fourier transform infrared spectroscopy, X-ray analysis and solid state electrochemistry. The use of a cavity microelectrode was necessary to explore a wide range of time scale and minimize the (undesired) capacitive currents. Cyclic voltametric experiments were very helpful to understand the kinetic of charge transfer in such microstructure. A structure-properties relationship has been established from the crystallographic and the electrochemical properties. A square-scheme is presented to explain the unique electrochemical behavior of hexacyanoferrate containing dysprosium since this compound exhibits a second redox system. The solid presents an open channel-like morphology in which the motion of charged species occurs during the redox processes. Precisely, the electronic transfer is accompanied by a cation diffusion inside the microcrystalline structure. The size of these channels strongly suggests that the kinetic of charge transfer is limited by the cation transport into these structures.  相似文献   

2.
High precision magnetoresistance (MR) Δρ/ρ(H,T) and magnetization M(H,T) measurements have been carried out for well known and typical strongly correlated electron system—cerium hexaboride. The detailed measurements have been fulfilled on single crystalline samples of CeB6 over a wide temperature range in magnetic fields up to 70 kOe. It was shown that the MR anomalies in the magnetic heavy fermion compound under investigation can be consistently interpreted in the frameworks of a simple relation between resistivity and magnetization—Δρ/ρM2 obtained by Yosida [Phys. Rev. 107(1957)396]. A local magnetic susceptibility χloc(T,H)=(1/H*(d(Δρ/ρ)/dH))1/2 was deduced directly from the MR Δρ(H,T) measurements and compared with the experimental data of magnetization M(H,T). The magnetic susceptibility dependences χloc(T,H) and χ(T,H) obtained in this study for CeB6 allow us to analyze the complicated H-T magnetic phase diagram of this so-called dense Kondo-system.  相似文献   

3.
The attachment of π-conjugated chromophores that absorb the radiation with long wavelengths to poly(methylphenylsilylene) ( 1 ) via reactions of its formylated derivative is described. Some of the polymers obtained show improved photostability and higher quantum photogeneration efficiency in comparison with the parent polymer. Photoconductive ultra-thin layers can be prepared from polar derivatives of ( 1 ) by the Langmuir–Blodgett technique.  相似文献   

4.
The cerium borates o-CeBO3, m-CeBO3 and CeB3O6 have been shown to be isostructural to their lanthanum derivatives. From diffuse reflectance, electron energy loss spectroscopy (EELS) and band structure calculations, it has been evidenced that a Ce3+ 4f-5d transition is responsible for weak absorption peaks around 3.5 eV while the O2p-Ce5d charge transfer gives rise to a strong absorption around 7 eV. Starting from self-consistent full potential LAPW calculations, the dielectric tensors of the three compounds were computed and compared to experimental data. It results in a satisfactory fit between the observed and the calculated extinction coefficient k and the index of refraction n.  相似文献   

5.
The synthesis, structure, and basic magnetic properties of Na2Co2TeO6 and Na3Co2SbO6 are reported. The crystal structures were determined by neutron powder diffraction. Na2Co2TeO6 has a two-layer hexagonal structure (space group P6322) while Na3Co2SbO6 has a single-layer monoclinic structure (space group C2/m). The Co, Te, and Sb ions are in octahedral coordination, and the edge sharing octahedra form planes interleaved by sodium ions. Both compounds have full ordering of the Co2+ and Te6+/Sb5+ ions in the ab plane such that the Co2+ ions form a honeycomb array. The stacking of the honeycomb arrays differ in the two compounds. Both Na2Co2TeO6 and Na3Co2SbO6 display magnetic ordering at low temperatures, with what appears to be a spin-flop transition found in Na3Co2SbO6.  相似文献   

6.
By means of powder X-ray diffraction, powder neutron diffraction and transmission electron microscopy (TEM), we determined the crystal structures of a metal-ordered manganite YBaMn2O6 which undergoes successive phase transitions. A high-temperature metallic phase (Tc1=520 K<T) crystallizes in a triclinic P1 with the following unit cell: Z=2, a=5.4948(15) Å, b=5.4920(14) Å, c=7.7174(4) Å, α=89.804(20)°, β=90.173(20)°, γ=91.160(4)°. The MnO6 octahedral tilting is approximately written as a0bc, leading to a significant structural anisotropy within the ab plane. The structure for Tc2<T<Tc1 is a monoclinic P2 (Z=2, a=5.5181(4) Å, b=5.5142(4) Å, c=7.6443(3) Å, β=90.267(4)°) with an abc tilting. The structural features suggest a dx2y2 orbital ordering (OO). Below Tc2=480 K, crystallographically inequivalent two octahedra show distinct volume difference, due to the Mn3+/Mn4+ charge ordering. The TEM study furthermore revealed a unique d3x2r2/d3y2r2 OO with a modified CE structure. It was found that the obtained crystal structures are strongly correlated to the unusual physical properties. In particular, the extremely high temperature at which charge degree of freedom freezes, Tc2, should be caused by the absence of the structural disorder and by heavily distorted MnO6 octahedra.  相似文献   

7.
The compound CeAu0.28Ge1.72 crystallizes in the ThSi2 structure type in the tetragonal space group I41/amd with lattice parameters a=b=4.2415(6) Å c=14.640(3) Å. CeAu0.28Ge1.72 is a polar intermetallic compound having a three-dimensional Ge/Au polyanion sub-network filled with Ce atoms. The magnetic susceptibility data show Curie-Weiss law behavior above 50 K. The compound orders ferromagnetically at ∼8 K with estimated magnetic moment of 2.48 μB/Ce. The ferromagnetic ordering is confirmed by the heat capacity data which show a rise at ∼8 K. The electronic specific heat coefficient (γ) value obtained from the paramagnetic temperature range 15-25 K is∼124(5) mJ/ mol K2. The entropy change due to the ferromagnetic transition is ∼4.2 J/mol K which is appreciably reduced compared to the value of R ln(2) expected for a crystal-field-split doublet ground state and/or Kondo exchange interactions.  相似文献   

8.
The introduction of hexyl chains endows the semiconductor with two or three orders of magnitudes enhancement in carrier mobility or current on/off ratio respectively.  相似文献   

9.
The room temperature structure of Bi0.75Sr0.25MnO3 has been fitted to high-resolution synchrotron X-ray and time-of-flight neutron powder diffraction data. Constrained structural models were refined using a Pn11 supercell (, , , and α=89.894(1)°) of the underlying Pnma perovskite structure. The best-fit model evidences a 3:1 Mn3+/Mn4+charge ordering with only 30% of the ideal separation of bond valence sums. An ordered intergrowth of antiferro-orbitally ordered (LaMnO3 type) and charge and ferro-orbitally ordered (YBaMn2O6 type) blocks is observed. Off-centre Bi/Sr displacements are ferroelectrically ordered in this model.  相似文献   

10.
The X-ray powder diffraction, reflectance, photoluminescence, photoluminescence excitation and ESR spectra of Ca5(PO4)3F:Eu3+ phosphor have been studied. Three distinct variants of calcium substitutional Eu3+-sites have been observed in this host and the charge compensating species related to each of these sites has been identified. It is noted that the host related trace impurities those have prospects of acting as charge compensator, and the reaction environment that exists during the preparation of the material, greatly influence the preferential substitution of different Ca2+-sites by the Eu3+ ions. It is also noted that the charge compensating species in a suitable case, takes part in the photophysical process of luminescence of the Eu3+.  相似文献   

11.
The actual structure of the vanadium phosphate K6(VO)2(V2O3)2(PO4)4(P2O7) has been determined, using a much larger single crystal than previously used for the isostructural Rb-phase. The actual supercell is four times larger than the corresponding orthorhombic subcell with , , , α=β=γ=90°. The structure resolution, performed in the triclinic space group C-1, shows that the P2O7 groups alone are responsible for the superstructure, all the other atoms keeping the atomic positions of the orthorhombic subcell. This structural study shows a perfect ordering of the P2O7 groups in the actual structure, in contrast to the results obtained from the subcell. Concomitantly, the V4+ and V5+ are found to be ordered in the form of [110] stripes.  相似文献   

12.
 The temperature-controlled transition from the Stokes charge transport of aqueous nanodroplets to the intrinsic conduction of nanodroplet clusters in nonionic microemulsions was studied. Two different charge transport processes apparent from a minimum value of the conductance have been simulated based on straightforward physical models. Their predictions compare favourably with the observations. Received: 4 September 2001 Accepted: 20 September 2001  相似文献   

13.
Reactions of interactions at the WO3|In2O3 and WO3|In6WO12 heterophase reaction interfaces, whose main product is In2(WO4)3, are studied by electrochemical methods for the first time ever. Due to a far greater n type conductance inherent in the initial substances, the reactions are a model object for the development of methodology of the electrochemical approach. Both reactions are discovered to proceed at the expense of the transport of components of WO3 and no evidence is discovered for the contribution of In3+ into diffusion and migration. Consisted data are obtained between the polarity of a spontaneously generated reaction difference of potentials and the direction of the field that accelerates the reaction: the current that is passed through electrochemical cells accelerates the reactions exclusively at the (−)-potential of a brick of WO3. A difference is discovered between the charge and mass transport paths—spontaneous and field-induced mass transport of WO3 or its components occurs via heterophase interfaces and adjacent areas and does not touch upon the In2(WO4)3 grains. Shown is the antibatic character of the behavior exhibited by dependences of identical properties of cells (potential drop across a cell) following a change in the dc polarity. A possible role of a reactionless electrosurface transport of WO3 in the mechanism of reaction and evolution of electrochemical properties of model electrochemical cells is demonstrated. The obtained data may or may not testify in favor of a hypothesis that presumes a prevailing role of the {WO4}2− mobility in the In2(WO4)3 structure. Original Russian Text ? A.Ya. Neiman, T.E. Kulikova, 2007, published in Elektrokhimiya, 2007, Vol. 43, No. 6, pp. 714–726. Based on the report delivered at the 8th International Meeting on Fundamental Problems of Solid-State Ionics, Chernogolovka (Russia), 2006.  相似文献   

14.
A new family of anhydrous sulfates, A2+Mn5(SO4)6 (A=Pb, Ba, Sr) is reported. The crystal structures of PbMn5(SO4)6 and SrMn5(SO4)6 are solved by powder X-ray and neutron diffraction. BaMn5(SO4)6 is isostructural. PbMn5(SO4)6 crystallizes with symmetry and unit cell parameters of a=14.551(1) Å and c=7.535(1) Å. The structure has rich features, including dimers of face-sharing MnO6 octahedra, and two complementary triangular layers of Mn atoms. All compounds undergo a magnetic ordering transition at 10 K, below which, the magnetic susceptibility of the compounds varies systematically with the radius of the non-magnetic cation. Low temperature neutron diffraction shows that the complementary triangular layers result in a ferrimagnet with a net moment corresponding to one high spin Mn2+ per unit cell, correlating well with the magnetization data. The non-magnetic variant PbMg5(SO4)6 is also reported.  相似文献   

15.
The phonon dispersion in the Kondo-insulator YbB12 and its structure analogue LuB12 has been studied in a wide energy range (up to 55 meV) by means of inelastic neutron scattering. The specific shape of phonon dispersion curves for low-frequency lattice vibrations could be described on the basis of a strong hierarchy suggested for the interactions between boron and rare-earth (RE) atoms: B-B?B-RE?RE-RE.  相似文献   

16.
基于瞬态光电压和瞬态光电流技术研究了锌掺杂的TiO2染料敏化太阳能电池中电子复合及传输的动力学行为.通过实验获得了不同阳极掺杂条件下的电子复合时间常数与电子收集时间常数,考察了锌掺杂对电池阳极材料导带能级和电子俘获态的影响.研究结果表明,锌的掺杂在提高TiO2导带能级的同时延长了俘获态电子的复合时间常数,从而大大提高了电池的开路电压.  相似文献   

17.
Constructing a Z-scheme is a significant approach to improve the separation of photogene rated carriers for effective organic pollutant degradation.Herein,a BiVO4/ZnIn2S4(BZ) Z-scheme composite was successfully synthesized,and applied to photodegrade methyl orange(MO) irradiated by a LED lamp.Anchoring the BiVO4 on the ZnIn2S4 nanoparticles promoted the separation of photogenerated electronholes and broadened the light response range.The detailed characterizations,including surface morphology,elements valence state,and photocurrent performance,demonstrated that the enhanced separation of photogenerated carriers was the pivotal reason for the enhanced photocatalysis reaction.Benefiting from the excellent photocatalytic characteristics,the 5% mass ratio of BZ composite presented the highest MO degradation rate of 0.00997 min^-1,which was 1.9 and 10.3 times greater than the virgin ZnIn2S4 and BiVO4,respectively.Furthermore,the BZ hybrid materials indicated a well photo-stability in the four recycling tests.  相似文献   

18.
The crystal structures of new sodium vanadylphosphate, Na4.35VO(PO4)2 (, , , Z=8, S.G. Ibam), and new (γ-) modification of Na4VO(PO4)2 (, , , Z=8, S.G. Pbc21) have been investigated by X-ray single-crystal diffraction. Both structures contain isolated infinite chains of the corner-sharing VO6 octahedra. The octahedra within the chains are additionally linked to each other by the tetrahedral PO4 groups. Sodium atoms are situated in the positions between the chains. Depending on the conditions of synthesis, the number of sodium atoms in the unit cell of the Na4+xVO(PO4)2 compounds may vary resulting in a change of the oxidation state of vanadium atoms and a change of their coordination environment. In Na4.35VO(PO4)2 vanadium atoms have almost regular octahedral coordination with six close V-O separations and all chains in the structure are equivalent. The crystal structure of γ-Na4VO(PO4)2 contains two non-equivalent chain types: the first one is similar to that found in Na4.35VO(PO4)2 whereas the second one contains VO6 octahedra with the short vanadyl bonds. The charge re-distribution was supposed in the new γ-modification of Na4VO(PO4)2 where the V4+δ and V4−δ cations orderly occupy octahedral positions in different chains. The origin of this phenomena is discussed.  相似文献   

19.
Ability to control charge transport at nanometer scale lies in the heart of design of fast reliable electronic devices. Molecular electronics thrive to use functional molecules for such transport. If the molecule contains redox center(s), a diode-like or transistor-like behavior can be easily explored by controlling not only the voltage difference between two metallic contacts of the molecular junction but also the potential of one of the contacting electrodes with respect to some reference. Thus, one needs to understand the relationship between electrochemical electron transfer and charge transport in metal–molecule–metal junctions. This review presents latest theoretical approaches toward understanding of such relationship and discusses pivotal experimental works to validate them. Tunneling and hopping pathways may operate in parallel (two-channel model), but experimental conditions dictate the channel preference.  相似文献   

20.
BaV6O11 was synthesized under high pressures and crystallizes in a structure closely related to magnetoplumbite. [V(1)O6]-octahedra share common edges and form a Kagomé lattice normal to the hexagonal [0 0 1] direction. The layers are connected in the direction of c via trigonal [V(3)O5]-bipyramids and [V(2)O6]-octahedra, which share common faces. The Ba-atoms are incorporated into cavities of the vanadium oxide framework and are coordinated by 12 oxygen atoms in the shape of a dodecahedron.Three magnetic anomalies at approximately 250, 115 and 75 K were detected in this compound. All of them are accompanied by anomalies in the specific heat measurement. To characterize possible structural transitions and determine the response of the structure to the magnetic anomalies, single crystal X-ray diffraction studies were carried out in the temperature range from 293 to 80 K. At 250 K the compound undergoes a structural phase transition. The space group above the transition temperature is P63/mmc, at lower temperature the symmetry reduces to P63mc. For the refinements in P63mc an inversion twin model was used, this way accounting for the loss of the center of symmetry. The structural phase transition is characterized by a small displacement of the V(1)-atom (forming the Kagomé lattice) out of its central position in the octahedra. As a consequence part of the octahedral edges/angles are increased, while the opposite ones are decreased. One limiting surface of the octahedral sheet is corrugated, while the other one is smoothened with respect to the high-temperature structure. This deformation of the octahedral sheets leads to the corresponding geometrical changes in the other coordination polyhedra.The structural response to the magnetic anomaly at 115 K is weak and mainly observable in the geometric parameters concerning the [V(1)O6]-octahedra and [V(3)O5]-bipyramids. This may serve as a first indication that the corresponding central atoms play an important role in the mechanism of the magnetic phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号