首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Powder neutron diffraction measurements were carried out for the ruthenium pyrochlore oxide Er2Ru2O7. The magnetic structure for this compound at 3.0 K has been solved using Rietveld analysis. The observed magnetic reflections suggest that the magnetic transitions are regarded as those to a long-range ordered state. It seems that the magnetic order of the Ru4+ and Er3+ magnetic moments occurs at 90 and 10 K, respectively.  相似文献   

2.
Bi2Ti2O7 has been synthesized using a co-precipitation route from H2O2/NH3(aq) solutions of titanium with aqueous bismuth nitrate. The stoichiometric material crystallizes into a pale yellow cubic pyrochlore phase. A powder X-ray diffraction study showed this crystallization to be very temperature sensitive, the pure phase can only be obtained within a few degrees of 470°C. Time-of-flight powder neutron diffraction studies of Bi2Ti2O7 (Space group , a=10.37949(4) Å at ambient temperature, Z=8, Rp=3.95%, Rwp=4.75%) revealed positional disorder in the bismuth site and in the O′ oxide site both at ambient temperature and at 2 K.  相似文献   

3.
The thermal conductivity and heat capacity of high-purity single crystals of yttrium titanate, Y2Ti2O7, have been determined over the temperature range 2 K?T?300 K. The experimental heat capacity is in very good agreement with an analysis based on three acoustic modes per unit cell (with the Debye characteristic temperature, θD, of ca. 970 K) and an assignment of the remaining 63 optic modes, as well as a correction for CpCv. From the integrated heat capacity data, the enthalpy and entropy relative to absolute zero, are, respectively, H(T=298.15 K)−H0=34.69 kJ mol−1 and S(T=298.15 K)−S0=211.2 J K−1 mol−1. The thermal conductivity shows a peak at ca. θD/50, characteristic of a highly purified crystal in which the phonon mean free path is about 10 μm in the defect/boundary low-temperature limit. The room-temperature thermal conductivity of Y2Ti2O7 is 2.8 W m−1 K−1, close to the calculated theoretical thermal conductivity, κmin, for fully coupled phonons at high temperatures.  相似文献   

4.
The structure of Gd2Zr2O7 pyrochlore over the temperature range 4-300 K has been refined from powder neutron diffraction data. The sample was enriched in 160Gd to avoid the high neutron absorption of naturally occurring Gd. The diffraction pattern showed well resolved superlattice reflections indicative of the pyrochlore structure and no evidence is found for anion-disorder from the structural refinements.  相似文献   

5.
New ternary bismuth iron niobates having structures based on chemical twinning of pyrochlore are described. Bi5.67Nb10FeO35 has hexagonal symmetry, P63/mmc, , , Z=2 and Bi9.3Nb16.9Fe1.1O57.8 has rhombohedral symmetry, R-3m, , , Z=3. The structures of both phases were determined and refined to R1=0.04 using single-crystal X-ray data. They can be described as being derived from the pyrochlore structure by chemical twinning on (111)py oxygen planes. The chemical twin operation produces pairs of corner-connected hexagonal tungsten bronze (HTB) layers as in the HTB structure, so the structures may alternatively be described as pyrochlore:HTB unit-cell intergrowth structures. In the hexagonal phase the pyrochlore blocks have a width of 12 Å, whereas the rhombohedral phase has pyrochlore blocks of two widths, 6 and 12 Å, alternating with HTB blocks. It is proposed that the previously reported binary 4Bi2O3:9Nb2O5 phase has a related structure containing pyrochlore blocks all of width 6 Å. A feature of the structures is partial occupancy (∼65%) of the Bi sites and displacement of the Bi atoms from the ideal pyrochlore A sites towards the surrounding oxygen atoms, as observed in Bi-containing pyrochlores.  相似文献   

6.
The crystalline structure of NaCaMg2F7 was determined using single crystal X-ray diffraction. This compound crystallizes in the cubic pyrochlore structure, i.e., space group , lattice parameter: and Z=8. All atoms occupy special crystalline sites, but Na and Ca are randomly distributed in the anti-cristobalite sub-lattice of the pyrochlore structure. The vibrational spectrum was determined by polarized Raman scattering and infrared reflectance. The number of observed Raman and infrared active phonons is larger than that predicted by the factor group analysis of the pyrochlore structure. The anomalous vibrational spectrum is discussed in terms of a disorder-induced symmetry lowering mechanism.  相似文献   

7.
Here we report a temperature-dependent Raman study of the pyrochlore “dynamic spin-ice” compound Pr2Sn2O7 and compare the results with its non-pyrochlore (monoclinic) counterpart Pr2Ti2O7. In addition to phonon modes, we observe two bands associated with electronic Raman scattering involving crystal field transitions in Pr2Sn2O7 at ∼135 and 460 cm−1 which couple strongly to phonons. Anomalous temperature dependence of phonon frequencies that are observed in pyrochlore Pr2Sn2O7 are absent in monoclinic Pr2Ti2O7. This, therefore, confirms that the strong phonon-phonon anharmonic interactions, responsible for the temperature-dependent anomalous behavior of phonons, arise due to the inherent vacant sites in the pyrochlore structure.  相似文献   

8.
Er3+-doped Y2Ti2O7 nanocrystals were fabricated by the sol-gel method. While the annealing temperature exceeds 757 °C, amorphous pyrochlore phase ErxY2−xTi2O7 transfers to well-crystallized nanocrystals, and the average crystal size increases from ∼70 to ∼180 nm under 800-1000 °C/1 h annealing. ErxY2−xTi2O7 nanocrystals absorbing 980 nm photons can produce the upconversion (526, 547, and 660 nm; 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2, respectively) and Stokes (1528 nm; 4I13/24I15/2) photoluminescence (PL). The infrared PL decay curve is single-exponential for Er3+ (5 mol%)-doped Y2Ti2O7 nanocrystals but slightly nonexponential for Er3+ (10 mol%)-doped Y2Ti2O7 nanocrystals. For 5 and 10 mol% doping concentrations, the mechanism of up-converted green light is the two-photon excited-state absorption. Much stronger intensity of red light relative to green light was observed for the sample with 10 mol% dopant. This phenomenon can be attributed to the reduced distance between Er3+-Er3+ ions, resulting in the enhancement of the energy-transfer upconversion and cross-relaxation mechanisms.  相似文献   

9.
10.
A facile CTAB-assisted sol-gel route has been successfully established to synthesize Y2Sn2O7 nanocrystals with pyrochlore structure. The route involves first the formation of CTAB-inorganics mesostructures as precursors and then their thermal decomposition to yield the final product. Well-crystallized and phase-pure Y2Sn2O7 particles of ∼40 nm in size can be readily obtained at 600°C, a temperature much lower than that of the conventional solid-state method. Furthermore, photoluminescence characterization of the Y2Sn2O7 nanocrystals doped with 5 mol% Eu3+ was carried out and the results show that the as-synthesized material display intense and prevailing emission at 589 nm belonging to the magnetic dipole transition.  相似文献   

11.
The crystal structures of the compounds La2−xYxZr2O7 and La2−xYxHf2O7 with x=0.0, 0.4, 0.8, 1.2, 1.6, and 2.0 have been studied using neutron powder diffraction and electron microscopy to determine the stability fields of the pyrochlore and fluorite solid solutions. The limits of pyrochlore stability in these solid solutions are found to be close to La0.8Y1.2Zr2O7 and La0.4Y1.6Hf2O7, respectively. In both systems the unit cell parameter is found to vary linearly with Y content across those compositions where the pyrochlore phase is stable, as does the x-coordinate of the oxygen atoms on the 48f (x,,) sites. In both systems, linear extrapolations of the pyrochlore data suggest that the disordering is accompanied by a small decrease in the lattice parameter of approximately 0.4%. After the pyrochlore solid solution limit is reached, a sharp change is observed from x∼0.41 to 0.375 as the disordered defect fluorite structure is favoured. Electron diffraction patterns illustrate that some short-range order remains in the disordered defect fluorite phases.  相似文献   

12.
Tl2MoO4 has been studied under high-pressure by X-ray diffraction, Raman spectroscopy, and optical absorption measurements. A first-order phase transition is observed at 3.5±0.5 GPa. The nature (ordered vs. disordered) of the high-pressure phase strongly depends on the local hydrostatic conditions. Optical absorption measurements tend to show that this transition is concomitant with an electronic structure transformation. Prior to the transition, single crystal X-ray diffraction shows that pressure induces interactions between MoO4 fragments and the Mo coordination number tends to increase. In addition, the stereoactivity of the lone-pair electrons on the three symmetrically independent Tl-sites is not uniform; while for two sites the stereoactivity decreases with increasing pressures for the third site the stereoactivity increases.  相似文献   

13.
We report the single crystal structure of LuNaPd6O8 grown from a sodium hydroxide flux. The utilization of a hydroxide flux has led to the preparation of the first ordered substitution of a lanthanide metal and an alkali metal on the A-site in a platinum group oxide and the first palladate to contain both a lanthanide metal and an alkali metal. The 1:1 ordered substitution of Lu3+ and Na+ in place of the commonly observed divalent cation leads to slabs of LuO8 and NaO8 cubes bridged together by PdO4 square planes. The compound crystallizes in the cubic space group Pm-3 (#200) with a=5.72500(10) Å and is structurally related to other cubic palladium oxides.  相似文献   

14.
Single crystals of the fast-ion conductor Ag16I12P2O7 were prepared and their structure (P6mcc, a = 12.054, c = 7.504 Å) was determined by X-ray diffraction (r = 0.08). The I atoms form a close-packed array leaving channels occupied by P2O4?7 ions running along the c axis. The Ag atoms are disordered over four different types of site with occupation numbers ranging from 0.12 to 0.52. Each Ag+ ion coordination polyhedron shares several faces with adjacent polyhedra providing ready paths for Ag+ ion conduction.  相似文献   

15.
Three novel hydrated borates Ba2B5O9(OH) (1), Sr2B5O9(OH) (2) and Li2Sr8B22O41(OH)2 (3) have been synthesized hydrothermally and their structures determined. Compounds (1) and (2) are isostructural, crystallizing in space group P21/c and having lattice parameters of a=6.6330(13) Å, b=8.6250(17) Å, c=14.680(3) Å, β=93.46(3)° and a=6.4970(13) Å, b=8.4180(17) Å, c=14.177(3) Å, β=94.35(3)°, respectively. Compound (3) crystallizes in P-1 with lattice parameters of a=6.4684(13) Å, b=8.4513(17) Å, c=14.881(3) Å, α=101.21(3)°, β=93.96(3)°, γ=90.67(3)°. While similar in their axis lengths, (3) differs greatly in structure and formulation from (1) and (2). The structure of (1) and (2) is contrasted to that of the well-known mineral hilgardite (Ca2B5O9Cl·H2O).  相似文献   

16.
Time-of-flight powder neutron diffraction has been performed on oxides with composition (La1−xNdx)2Zr2O7 and Nd2(Zr1−xTix)2O7, where x=0, 0.2, 0.4,…1.0, in order to determine the solid solution behaviour across each series. Between La2Zr2O7 and Nd2Zr2O7, a cubic pyrochlore phase is observed (, Z=8). A linear decrease in the lattice parameter from 10.8047 to 10.6758 Å indicates complete miscibility of the two end-members. For the same series, the 48f oxygen x-parameter increases from 0.3313 to 0.3348, suggesting increased distortion of the 6 coordinate B sites and reduced distortion of the 8 coordinate A sites. There is limited solubility of Nd2Ti2O7 in Nd2Zr2O7. Exsolution of a monoclinic phase (P21, Z=8) rich in Nd2Ti2O7 is observed at approximately x=0.56. The compositional range over which a solid solution exists is more extensive than that which has been previously reported. The solubility of Nd2Zr2O7 in Nd2Ti2O7 is very low.  相似文献   

17.
The high-pressure iron borate α-FeB2O4 was synthesized under high-pressure and high-temperature conditions in a Walker-type multianvil apparatus at 7.5 GPa and 1100 °C. The monoclinic iron borate crystallizes with eight formula units in the space group P21/c with the lattice parameters a=715.2(2), b=744.5(2), c=862.3(2) pm, and β=94.71(3)°. The compound is built up exclusively from corner-sharing BO4-tetrahedra, isotypic to the monoclinic phases β-SrGa2O4, CaAl2O4-II, and CaGa2O4. Additionally, the structure is closely related to the orthorhombic compound BaFe2O4. The structure consists of layers of six-membered rings, which are interconnected to a three-dimensional network. The iron cations are coordinated by six and seven oxygen atoms. Next to synthesis and crystal structure of the new high-pressure borate, structural coherences to other structure types are discussed.  相似文献   

18.
High-pressure synthesis experiments in the system Na2O-Y2O3-SiO2 revealed the existence of a previously unknown polymorph of NaYSi2O6 or Na3Y3[Si3O9]2 which was quenched from 3.0 GPa and 1000 °C. Structural investigations on this modification have been performed using single-crystal X-ray diffraction data collected at ambient conditions. Furthermore, unpolarized micro-Raman spectra have been obtained from single-crystal material. The high-P modification of NaYSi2O6 crystallizes in the centrosymmetric space group C2/c with 12 formula units per cell (a=8.2131(9) Å, b=10.3983(14) Å, c=17.6542(21) Å, β=100.804(9)°, V=1481.0(3) Å3, R(|F|)=0.033 for 1142 independent observed reflections) and belongs to the group of cyclo-silicates. Basic building units are isolated three-membered [Si3O9] rings located in layers parallel to (010). Within a single layer the rings are concentrated in strings parallel to [100]. The sequence of directedness of up (U) or down (D) pointing tetrahedra of a single ring is UUU or DDD, respectively. Stacking of the layers parallel to b results in the formation of a three-dimensional structure in which yttrium and sodium cations are incorporated for charge compensation. In more detail, four non-tetrahedral cation positions can be differentiated which are coordinated by 6 and 8 oxygen ligands. Refinements of the site occupancies did not reveal any indication for mixed Na-Y populations on these positions. Finally, several geometrical parameters of rings occurring in cyclo-trisilicate structures have been compiled and are discussed.  相似文献   

19.
X-band electron spin resonance (ESR) spectra and fluorescence measurements were performed on Mn-doped Na2ZnP2O7 (NZPO) single crystal synthesized by the Czochralski pulling method and glasses synthesized by the quenching process. For the single crystal, ESR angular dependences were measured in both the zx and xy plans of the NZPO lattice. The fine and hyperfine structure parameters and g-factor values were determined by modelling the experimental spectra. Using the Newman superposition model, the resonating centres in the single crystal and powder (crushed from crystals) samples are assigned to Mn2+ ions substituting for both zinc and sodium. For the glass sample the analysis of the ESR data shows that Mn2+ ions substitute for the Na+ ions. These interpretations are confirmed by the fluorescence measurements with a unique broad red band for the glassy compound and the presence of two emission bands (green and red) in the case of the crystal sample.  相似文献   

20.
The binary compound Rh3Bi14 was synthesized from the elements. The compound is isostructural with Rh3Bi12Br2, crystallizes with the orthorhombic space group Fddd (no. 70) and lattice parameters a=6.8959(15) Å, b=17.379(3) Å, c=31.758(6) Å. The crystal structure consists of a three-dimensional (3D) framework of edge-sharing cubes and square antiprisms (RhBi8/2). It is closely related to the intermetallic compound RhBi4, in which two Y-like frameworks of antiprisms interpenetrate. In Rh3Bi14 and Rh3Bi12Br2, additional bismuth and bromine anions, respectively, fill the channels of the 3D polyhedral framework formed by covalently bonded rhodium and bismuth atoms. High-pressure X-ray powder diffraction data from synchrotron measurements of Rh3Bi14 and Rh3Bi12Br2 indicate a high stability of both compounds in the investigated range from ambient pressure to ca. 30 GPa at ambient temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号