首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
用晶格玻尔兹曼方法研究微结构表面的疏水性能   总被引:1,自引:0,他引:1       下载免费PDF全文
王文霞  施娟  邱冰  李华兵 《物理学报》2010,59(12):8371-8376
将固体表面分别近似为具有简单的周期性矩形、三角形和半圆形微粗糙结构表面,建立了两相流的晶格玻尔兹曼模型.通过测量不同微粗糙结构表面上液滴的接触角,探讨微结构形状和尺寸的改变对固体材料表面疏水性能的影响.最后,由流体在各种糙壁管中的速度滑移,验证了结论的正确性.  相似文献   

2.
We report a lattice Boltzmann model that can be used to simulate fluid-solid coupling heat transfer in fractal porous media. A numerical simulation is conducted to investigate the temperature evolution under different ratios of thermal conductivity of solid matrix of porous media to that of fluid. The accordance of our simulation results with the solutions from the conventional CFD method indicates the feasibility and the reliability for the developed lattice Boltzmann model to reveal the phenomena and rules of fluid-solid coupling heat transfer in complex porous structures.  相似文献   

3.
Lattice Boltzmann computational fluid dynamics in three dimensions   总被引:7,自引:0,他引:7  
The recent development of the lattice gas method and its extension to the lattice Boltzmann method have provided new computational schemes for fluid dynamics. Both methods are fully paralleled and can easily model many different physical problems, including flows with complicated boundary conditions. In this paper, basic principles of a lattice Boltzmann computational method are described and applied to several three-dimensional benchmark problems. In most previous lattice gas and lattice Boltzmann methods, a face-centered-hyper-cubic lattice in four-dimensional space was used to obtain an isotropic stress tensor. To conserve computer memory, we develop a model which requires 14 moving directions instead of the usual 24 directions. Lattice Boltzmann models, describing two-phase fluid flows and magnetohydrodynamics, can be developed based on this simpler 14-directional lattice. Comparisons between three-dimensional spectral code results and results using our method are given for simple periodic geometries. An important property of the lattice Boltzmann method is that simulations for flow in simple and complex geometries have the same speed and efficiency, while all other methods, including the spectral method, are unable to model complicated geometries efficiently.  相似文献   

4.
毛威  郭照立  王亮 《物理学报》2013,62(8):84703-084703
采用格子Boltzmann方法模拟了在热对流条件下的颗粒沉降问题, 在研究单颗粒在等温流体、热流体和冷流体中运动的基础上, 进一步模拟了两个不同温度的颗粒在流体中的沉降.结果表明:两等温颗粒的沉降方式与雷诺数Re以及格拉晓夫数Gr密切相关, 而两不同温度的颗粒与两等温颗粒的沉降规律有显著不同.无论初始位置如何, 冷颗粒最终总位于热颗粒下方运动, Re较大时, 发生连续的拖曳、接触现象, 而Re较小时, 冷颗粒会以较大的沉降速度远离热颗粒. 关键词: 格子Boltzmann方法 颗粒沉降 热对流  相似文献   

5.
Conventional lattice Boltzmann models for the simulation of fluid dynamics are restricted by an error in the stress tensor that is negligible only for small flow velocity and at a singular value of the temperature. To that end, we propose a unified formulation that restores Galilean invariance and the isotropy of the stress tensor by introducing an extended equilibrium. This modification extends lattice Boltzmann models to simulations with higher values of the flow velocity and can be used at temperatures that are higher than the lattice reference temperature, which enhances computational efficiency by decreasing the number of required time steps. Furthermore, the extended model also remains valid for stretched lattices, which are useful when flow gradients are predominant in one direction. The model is validated by simulations of two- and three-dimensional benchmark problems, including the double shear layer flow, the decay of homogeneous isotropic turbulence, the laminar boundary layer over a flat plate and the turbulent channel flow.  相似文献   

6.
7.
A Lattice Boltzmann Model for Anisotropic Crystal Growth from Melt   总被引:2,自引:0,他引:2  
We coupled the lattice Boltzmann method with enhanced collisions for hydrodynamics with a model for the anisotropic liquid/solid phase transition. The model is based on a simple reaction model. As a test we have performed calculations for dendritic growth of a crystal into an undercooled melt.  相似文献   

8.
A discrete velocity model is presented for lattice Boltzmann thermal fluid dynamics. This model is implemented and tested in two dimensions with a finite difference scheme. Comparison with analytical solutions shows an excellent agreement even for wide temperature differences. An alternative approximate approach is then presented for traditional lattice transport schemes  相似文献   

9.
A lattice Boltzmann method is developed to simulate three-dimensional solid particle motions in fluids. In the present model, a uniform grid is used and the exact spatial location of the physical boundary of the suspended particles is determined using an interpolation scheme. The numerical accuracy and efficiency of the proposed lattice Boltzmann method is demonstrated by simulating the sedimentation of a single sphere in a square cylinder. Highly accurate simulation results can be achieved with few meshes, compared with the previous lattice Boltzmann methods. The present method is expected to find applications on the flow systems with moving boundaries, such as the blood flow in distensible vessels, the particle-flow interaction and the solidification of alloys.  相似文献   

10.
杲东彦  陈振乾 《计算物理》2011,28(3):361-367
建立自然对流作用下融化的格子Boltzmann双分布函数模型,根据非线性对流扩散方程的格子Boltzmann模型理论提出一个新的表征融化温度场的分布函数演化方程,并通过变松弛时间方法处理固液两相变热物性传热问题.应用模型对热传导融化及自然对流融化特别固液变热物的融化过程进行模拟.模拟结果与分析解、经典的关联式结果吻合较好,模型的正确性得到了验证.模拟结果表明,自然对流对融化传热过程有着重要的影响,此外固相热传导也对融化传热、融化速率及固液两相温度分布都有一定影响.  相似文献   

11.
A numerical scheme based on the lattice Boltzmann method, which can simulate the electrowetting of an electrolyte droplet and flow is proposed. The accuracy and robustness of this model are demonstrated by numerically simulating a droplet on a flat surface, on which the cosine of contact angle shows parabolic increase consistent with the Lippmann-Young equation. This scheme is expected to the application in the study of the mechanism of electrowetting on dielectric and electrowetting fluid in complex geometry.  相似文献   

12.
In this letter,we present a lattice Boltzmann simulation for complex flow in a solar wall system which includes porous media flow and heat transfer,specifically for solar energy utilization through an unglazed transpired solar air collector(UTC).Besides the lattice Boltzmann equation(LBE) for time evolution of particle distribution function for fluid field,we introduce an analogy,LBE for time evolution of distribution function for temperature.Both temperature fields of fluid(air) and solid(porous media) are modeled.We study the effects of fan velocity,solar radiation intensity,porosity,etc.on the thermal performance of the UTC.In general,our simulation results are in good agreement with what in literature.With the current system setting,both fan velocity and solar radiation intensity have significant effect on the thermal performance of the UTC.However,it is shown that the porosity has negligible effect on the heat collector indicating the current system setting might not be realistic.Further examinations of thermal performance in different UTC systems are ongoing.The results are expected to present in near future.  相似文献   

13.
It is shown how shear-thinning flow can be simulated without the need for numerical differentiation by following a lattice Boltzmann approach. The basic idea of is to combine the Cross model of viscosity with a 3D multiple relaxation time lattice Boltzmann method and to extract the required velocity derivatives from intrinsic quantities of the lattice Boltzmann scheme. Computational results are presented for a simple benchmark and for the simulation of liquid composite moulding.  相似文献   

14.
Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming   总被引:1,自引:0,他引:1  
We present a 2D- and 3D-lattice Boltzmann model for the treatment of free surface flows including gas diffusion. Interface advection and related boundary conditions are based on the idea of the lattice Boltzmann equation. The fluid dynamic boundary conditions are approximated by using the mass and momentum fluxes across the interface, which do not require explicit calculation of gradients. A similar procedure is applied to fulfill the diffusion boundary condition. Simple verification tests demonstrate the correctness of the algorithms. 2D- and 3D-foam evolution examples demonstrate the potential of the method.  相似文献   

15.
针对Burgers-Korteweg-de Vries(cBKdV)复合方程提出一种格子Boltzmann模型.通过恰当地处理色散项uxxx并运用Chapman-Enskog展开从格子Boltzmann方程推导出宏观方程,从而得到联系微观量与宏观量的局部平衡分布函数.对不同微分方程进行数值实验,数值解与解析解非常吻合,相比于其它数值结果,该格子Boltzmann模型的数值结果更精确,说明该数值模型的高效性.  相似文献   

16.
Lack of energy conservation in lattice Boltzmann models leads to unrealistically high values of the bulk viscosity. For this reason, the lattice Boltzmann method remains a computational tool rather than a model of a fluid. A novel lattice Boltzmann model with energy conservation is derived from Boltzmann's kinetic theory. Simulations demonstrate that the new lattice Boltzmann model is the valid approximation of the Boltzmann equation for weakly compressible flows and microflows.  相似文献   

17.
Lattice Boltzmann simulations of flow past a cylindrical obstacle   总被引:1,自引:0,他引:1  
We present lattice Boltzmann simulations of flow past a cylindrical obstacle. Our study is based on the Lévy walk model of turbulence in a lattice Boltzmann model. We discuss pressure around the cylinder with laminar and turbulent incident flows, as well as the dependence of the von Karman street on the analog of integral scale in our model.  相似文献   

18.
The lattice Boltzmann simulation of nanofluid flow and heat transfer during natural convection within a dumbbell-shaped heat exchanger is carried out. The heat exchanger is filled with CuO–water. The KKL model is employed to predict the thermo-physical properties of nanofluid. In order to perform a comprehensive hydrothermal investigation, different post-processing approaches such as heatline visualization, total entropy generation, local entropy generation based on local fluid friction irreversibility and heat transfer irreversibility, average and local Nusselt variation are employed. In the present investigation, it is tried to present the impact of different influential parameters like Rayleigh number, solid volume fraction of nanofluid and thermal arrangement of internal fins-bodies on the fluid flow, heat transfer rate and entropy generation.  相似文献   

19.
《Physica A》2006,369(1):159-184
I introduce two mesoscale algorithms, lattice Boltzmann and stochastic rotation dynamics, and show how they can be used to investigate the hydrodynamics of complex fluids. For each method I describe the algorithm, show that it solves the Navier–Stokes equations, and then discuss physical problems where it is particularly applicable. For lattice Boltzmann the examples I choose are phase ordering in a binary fluid and drop dynamics on a chemically patterned surface. For stochastic rotation dynamics I consider the hydrodynamics of dilute polymer solutions, concentrating on shear thinning and translocation across a barrier.  相似文献   

20.
《Physica A》2006,362(1):78-83
A lattice Boltzmann phase-field method for flows of binary-alloys with liquid–solid phase-transitions is introduced. Applications to two-dimensional flows with solidification fronts are presented and commented on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号