首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have reexamined the possibility of explaining the solar neutrino data through long-wavelength neutrino oscillations induced by a tiny breakdown of the weak equivalence principle of general relativity. We have found that such gravitationally induced oscillations can provide a viable solution to the solar neutrino problem.  相似文献   

2.
We have updated the analysis for the solution to the solar neutrino problem by the long-wavelength neutrino oscillations induced by a tiny breakdown of the weak equivalence principle of general relativity, and obtained a very good fit to all the solar neutrino data.  相似文献   

3.
《Physics letters. [Part B]》1988,206(2):271-275
Within the supersymmetric flipped SU(5)×U(1) model, we propose a mechanism for realization of the Voloshin-Vysotsky-Okun solution to the solar neutrino problem by attributing a large magnetic moment to the electron neutrino, as required to explain the solar neutrino data.  相似文献   

4.
We present an updated version of the solution to the solar neutrino problem based on non-standard flavor changing neutrino interactions (FCNI) and non-universal flavor diagonal neutrino interactions (FDNI). We find a good fit not only to the total rates measured by all solar neutrino experiments but also to the day-night and seasonal variations of the event rate, as well as the recoil electron energy spectrum measured by the SuperKamiokande collaboration.  相似文献   

5.
We present a solution of the solar neutrino deficit using three flavors of neutrinos and R-parity non-conserving supersymmetry. In this model, in vacuum, the is massless and unmixed, mass and mixing being restricted to the - sector only, which we choose in consistency with the requirements of the atmospheric neutrino anomaly. The flavor changing and flavor diagonal neutral currents present in the model and the three-flavor picture together produce an energy dependent resonance-induced - mixing in the sun. This mixing plays a key role in the new solution to the solar neutrino problem. The best fit to the solar neutrino rates and spectrum (1258-day SK and 241-day SNO data) requires a mass square difference of eV2 in vacuum between the two lightest neutrinos. This solution cannot accommodate a significant day-night effect for solar neutrinos nor CP violation in terrestrial neutrino experiments. Received: 26 December 2001 / Revised version: 16 February 2002 / Published online: 26 July 2002  相似文献   

6.
Since the pioneering experiment of R. Davis et al., which started neutrino astronomy by measuring the solar neutrinos via the inverse beta decay reaction on 37Cl, all solar neutrino experiments find a considerably lower flux than expected by standard solar models. This finding is generally called the solar neutrino problem. Many attempts have been made to explain this result by altering the solar models, or assuming different nuclear cross sections for fusion processes assumed to be the energy sources in the sun.There have been performed numerous experiments recently to investigate the different possibilities to explain the solar neutrino problem. These experiments covered solar physics with helioseismology, nuclear cross section measurements, and solar neutrino experiments.Up to now no convincing explanation based on “standard” physics was suggested. However, assuming nonstandard neutrino properties, i.e. neutrino masses and mixing as expected in most extensions of the standard theory of elementary particle physics, natural solutions for the solar neutrino problem can be found.It appears that with this newly invented neutrino astronomy fundamental information on astrophysics as well as elementary particle physics are tested uniquely. In this contribution an attempt is made to review the situation of the neutrino astronomy for solar neutrino spectroscopy and discuss the future prospects in this field.  相似文献   

7.
We analyze here how future solar neutrino experiments could detect neutrino flux fluctuations due to magnetohydrodynamics (MHD) perturbations on the solar plasma. We state that if such time fluctuations are detected, this would provide a unique signature of the resonant spin-flavor precession (RSFP) mechanism as a solution to the solar neutrino problem. Received: 2 July 2001 / Revised version: 4 April 2002 / Published online: 20 August 2002  相似文献   

8.
Standard model extensions which include a charged, weak-singlet scalar particle can induce an electron-neutrino magnetic moment large enough to implement the Voloshin-Vysotski-Okun solution to the solar neutrino problem and observed anticorrelation of sunspots and neutrino flux. The resonant production and decay of such a charged scalar particle by neutrinos from ultra-high energy point sources of cosmic rays such as Cygnus X-3 has been discussed in the literature as a possible source of an anomalous muon signal in deep underground detectors. We argue here that there are versions of the charged scalar model which simultaneously can accommodate the above phenomena and in addition predict a radiative neutrino decay whose lifetime is about 1024 s. This value is consistent with that needed for a dark-matter neutrino of about 30 eV mass to yield a flux of UV photons which could explain several puzzling observations of Hα emission from the galactic disk and from the intergalactic HI cloud in Leo.  相似文献   

9.
The neutrino decay solution of the solar neutrino problem is revisited in the context of majoron models. It is shown that for a definite range of parameters this scenario reconciles both the Homestake and the Kamiokande data. The prediction for Gallium detectors is also given. Attention is devoted to the analysis of the signal, which is the crucial prediction of this scenario. It is shown that the sensitivity of Borexino is sufficient to observe this signal and to distinguish it from the alternative signal provided by hybrid models of neutrino oscillation and magnetic moment transitions. Other sources of solar production are also reviewed (matter induced decay, MSW catalized decay or the decay of solar 17 keV neutrinos).  相似文献   

10.
We analyze the existing solar neutrino experiment data and show the allowed regions. The result from SNO's salt phase itself restricts quite a lot the allowed region's area. Reactor neutrinos play an important role in determining oscillation parameters. KamLAND gives decisive conclusion on the solution to the solar neutrino puzzle, in particular, the spectral distortion in the 766.3 Ty KamLAND data gives another new improvement in the constraint of solar MSW-LMA solutions. We confirm that at 99.73% C.L. the high-LMA solution is excluded.  相似文献   

11.
The physics potential of GENIUS, a recently proposed double beta decay and dark matter experiment is discussed. The experiment will allow to probe neutrino masses down to 10?(2–3) eV. GENIUS will test the structure of the neutrino mass matrix, and therefore implicitly neutrino oscillation parameters comparable or superior in sensitivity to the best proposed dedicated terrestrial neutrino oscillation experiments. If the 10-3 eV level is reached, GENIUS will even allow to test the large angle MSW solution of the solar neutrino problem. Even in its first stage GENIUS will confirm or rule out degenerate or inverted neutrino mass scenarios, which have been widely discussed in the literature as a possible solution to current hints on finite neutrino masses and also test the νe ? νμ hypothesis of the atmospheric neutrino problem. GENIUS would contribute to the search for R-parity violating SUSY and right-handed W-bosons on a scale similar or superior to LHC. In addition, GENIUS would largely improve the current 0νββ decay searches for R-parity conserving SUSY and leptoquarks. Concerning cold dark matter (CDM) search, the low background anticipated for GENIUS would, for the first time ever, allow to cover the complete MSSM neutralino parameter space, making GENIUS competitive to LHC in SUSY discovery. If GENIUS could find SUSY CDM as a by-product it would confirm that R-parity must be conserved exactly. GENIUS will thus be a major tool for future non-accelerator particle physics.  相似文献   

12.
We show that, in the framework of three light neutrino species with hierarchical masses and assuming no fine tuning between the entries of the neutrino mass matrix, one can use the solar neutrino data to obtain information on the element U(e3) of the lepton mixing matrix. Conversely, a measurement of U(e3) in atmospheric or long baseline accelerator or reactor neutrino experiments would help discriminate between possible oscillation solutions of the solar neutrino problem.  相似文献   

13.
We discuss the implications of the recent measurement of a 17 keV mass component in the electron neutrino sector. Such a heavy state must decay in order to be compatible with cosmology; this requires states additional to those of the standard model. The most likely candidates are either majorons, allowing the decay into massless weakly interacting scalars, or single neutrinos, allowing the decay via the Z into light neutrinos. We show that in the latter case there is a lower bound on the lifetime in conflict with the cosmological constraints on this decay channel and on the photon plus neutrino decay channel which is also present. The extensions of the standard model needed to reduce the lifetime are considered. We analyze the mass matrix, playing particular regard to the singlet neutrino case, and discuss how it might be extended to explain the solar neutrino deficit.  相似文献   

14.
《Physics letters. [Part B]》1987,195(3):331-336
We examine the effects of resonant neutrino oscillations, proposed as a solution to the solar neutrino puzzle, on the neutrino signature of a Type II supernova. We find that, for parameters corresponding to an adiabatic conversion of most of the 8B neutrino flux, the supernova neutrino signal in a water-Čerenkov detector is altered in the following way: (1) The isotropic-to-directional event ratio increases; (2) The short time scale neutronization burst signal decreases by a factor 7, perhaps rendering it unobservable. Detection of these changes would allow one to distinguish between neutrino oscillations and solar model alterations as solutions to the solar neutrino problem. We also note that mixing of the higher energy νμ and νr's to νe's will enhance detection of the thermally produced ν-flux.  相似文献   

15.
We consider the problem of determination of the neutrino mass ordering via precise study of the vacuum neutrino oscillations in the JUNO and other future medium baseline reactor neutrino experiments. We are proposing to resolve neutrino mass ordering by determination of the neutrino oscillation parameters from analysis of the data of the reactor experiments and comparison them with the oscillation parameters obtained from analysis of the solar and KamLAND experiments.  相似文献   

16.
We take as a starting point the Gelmini–Roncadelli model enlarged by a term with explicit lepton number violation in the Higgs potential and add a neutrino singlet field that is coupled via a scalar doublet to the usual leptons. This scenario allows us to take into account all three present indications in favor of neutrino oscillations provided by the solar, atmospheric, and LSND neutrino oscillation experiments. Furthermore, it suggests a model which reproduces naturally one of the two 4-neutrino mass spectra favored by the data. In this model, the solar neutrino problem is solved by large mixing MSW transitions, and the atmospheric neutrino problem by transitions of into a sterile neutrino. Received: 11 May 1999 / Published online: 3 February 2000  相似文献   

17.
We observed, for the first time, solar neutrinos in the 1.0-1.5 MeV energy range. We determined the rate of pep solar neutrino interactions in Borexino to be 3.1±0.6{stat}±0.3{syst} counts/(day·100 ton). Assuming the pep neutrino flux predicted by the standard solar model, we obtained a constraint on the CNO solar neutrino interaction rate of <7.9 counts/(day·100 ton) (95% C.L.). The absence of the solar neutrino signal is disfavored at 99.97% C.L., while the absence of the pep signal is disfavored at 98% C.L. The necessary sensitivity was achieved by adopting data analysis techniques for the rejection of cosmogenic {11}C, the dominant background in the 1-2 MeV region. Assuming the Mikheyev-Smirnov-Wolfenstein large mixing angle solution to solar neutrino oscillations, these values correspond to solar neutrino fluxes of (1.6±0.3)×10{8} cm{-2}?s^{-1} and <7.7×10{8} cm{-2}?s{-1} (95% C.L.), respectively, in agreement with both the high and low metallicity standard solar models. These results represent the first direct evidence of the pep neutrino signal and the strongest constraint of the CNO solar neutrino flux to date.  相似文献   

18.
We have analyzed the most recent available Super-Kamiokande data in a three flavor neutrino oscillation model. We have here neglected possible matter effects and we performed a fit to atmospheric and solar Super-Kamiokande data. We have investigated a large parameter range where the mixing angles were restricted to , , and the mass squared differences were taken to be in the intervals and , i.e., the hierarchy between the mass squared differences is not completely determined. This yielded a best solution characterized by the parameter values , , , , and , which shows that the analyzed experimental data speak in favor of a bimaximal mixing scenario with one of the mass squared differences in the “just-so” domain and the other one in the range capable of providing a solution to the atmospheric neutrino problem. Received: 4 July 2000 / Published online: 27 October 2000  相似文献   

19.
We discuss the impact of different solar neutrino data on the spin-flavor-precession (SFP) mechanism of neutrino conversion. We find that, although detailed solar rates and spectra allow the SFP solution as a subleading effect, the recent KamLAND constraint on the solar antineutrino flux places stronger constraints on this mechanism. Moreover, we show that for the case of random magnetic fields inside the Sun, one obtains a more stringent constraint on the neutrino magnetic moment down to the level of mu(nu)< or = few x 10(-12)mu(B), similar to bounds obtained from star cooling.  相似文献   

20.
The data collected in the SuperKamiokande detector as of June 1999 are presented. This review covers the complete spectrum of neutrino interactions from solar neutrinos, through the entire spectrum of atmospheric neutrinos, and ending with the neutrino beam produced at KEK for a long-baseline experiment. Different interpretations of these data as demonstrations of neutrino oscillations are discussed. The results of a search for nucleon decay are also summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号