首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preparation of the Ca-β-diketonate complexes with crown-ethers, [Ca(btfa)2(15-crown-5)] (1), [Ca(adtfa)2(15-crown-5)] (2), [Ca(adtfa)2(15-crown-5)](C6H5CH3)0.5 (3) and [{Ca(adtfa)(18-crown-6)(H2O)}{Ca(adtfa)3(H2O)}(EtOH)] (4) (btfa = 1,1,1-trifluoro-4-phenyl-butanedionato-2,4; adtfa = 1,1,1-trifluoro-4-(1-adamantyl)butanedionato-2,4; 15-crown-5 = 1,4,7,10,13-pentaoxacyclopentadecane; 18-crown-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane), is described. Complex 1 has been prepared from the reaction of metallic Ca with 2 eq. of Hbtfa and 1 eq. of 15-crown-5 in toluene; complex 2 has been prepared from the reaction of metallic Ca with 2 eq. of Hadtfa and 1 eq. of 15-crown-5 in ethanol. The solvated complex 3 was obtained by cooling of a toluene-hexane solution of 2. The hydrated complex 4 was prepared from the reaction of metallic Ca with 2 eq. of Hadtfa and 1 eq. of 18-crown-6, followed by addition of excess H2O to the resulting reaction mixture. The all complexes were characterized by elemental analyses, IR-spectroscopy, NMR-spectroscopy, single-crystal X-ray diffraction methods, DSC and TGA. A single-crystal X-ray study of 1 and 3 has show that complexes 1 and 3 are monomeric and contain the calcium atom bonded with two β-diketonate ligands and one molecule of crown-ether. Complex 4, as shown by X-ray analyses, is an ion-paired solvated adduct, containing the cation {Ca(adtfa)(18-crown-6)(H2O)}+ and the anion {Ca(adtfa)3(H2O)}. The monomeric complexes 1-3 are volatile and thermally stable in the temperature range 100-260 °C. Complex 4 undergoes decomposition above 110 °C with consecutive loss of ethanol, H2O, 18-crown-6 and some evaporization of 4.  相似文献   

2.
The 16-electron half-sandwich complexes CpRh[E2C2(B10H10)] (E = S, 1a; Se, 1b) react with [Ru(COD)Cl2]x under different conditions to give different types of heterometallic complexes. When the reactions were carried out in THF for 24 h, the binuclear Rh/Ru complexes [CpRh(μ-Cl)2(COD)Ru][E2C2(B10H10)] (E = S, 2a; Se, 2b) bridged by two Cl atoms and the binuclear Rh/Rh complexes (CpRh)2[E2C2(B10H10)] (E = S, 3a; Se, 3b) with direct Rh-Rh bond can be isolated in moderate yields. [Ru(COD)Cl2] fragments in 2a and 2b have inserted into the Rh-E bond. If the [Ru(COD)Cl2]x was reacted with 1a in the presence of K2CO3 in methanol solution, the product [CpRh(COD)]Ru[S2C2(B10H10]] (4a), K[(μ-Cl)(μ-OCH3)Ru(COD)]4 (5a) and 3a were obtained. The B(3)-H activation in complex 4a was found. However, when the reaction between 1b and [Ru(COD)Cl2]x was carried out in excessive NaHCO3, the carborane cage opened products {CpRh[S2C2(B9H10)]}Ru(COD) (6b), {CpRh[S2C2(B9H9)]}Ru(COD)(OCH3) (7b) and 3b were obtained. All complexes were fully characterized by their IR, 1H NMR and elemental analyses. The molecular structures of 2a, 2b, 3b, 4a, 5a, and 7b have been determined by X-ray crystallography.  相似文献   

3.
A series of dibenzo-18-crown-6 lariat ethers containing two C7H15 (11), (CH2)2C6F13 (14), (CH2)2C8F17 (15), NHC7H15 (18) and NHCH2C6F13 (19) sidearms were prepared and the single crystal X-ray structure of cis-4,4′-di(1H,1H,2H,2H-perfluorodecyl)-dibenzo-18-crown-6 (15a) is reported. The “light fluorous” dibenzo-18-crown-6 ether (14) has emerged as a stable and robust PTC catalyst, which can be recycled efficiently by fluorous solid-phase extraction, and gives better PTC catalytic activity compared to the parent, non-fluorinated PTC catalyst, dibenzo-18-crown-6, and the alkylated derivative (11) in aliphatic and aromatic nucleophilic substitutions.  相似文献   

4.
The syntheses and characterization of two novel ferrocene derivatives containing 3,5-diphenylpyrazole units of general formula [1-R-3,5-Ph2-(C3N2)-CH2-Fc] {Fc = (η5-C5H5)Fe(η5-C5H4) and R = H (2) or Me (3)} together with a study of their reactivity with palladium(II) and platinum(II) salts or complexes under different experimental conditions is described. These studies have allowed us to isolate and characterize trans-[Pd{1-Me-3,5-Ph2-(C3N2)-CH2-Fc]}2Cl2] (4a) and three different types of heterodimetallic complexes: cis-[M{1-Me-3,5-Ph2-(C3N2)-CH2-Fc]}Cl2(dmso)] {M = Pd (5a) or Pt (5b)}, the cyclometallated products [M{κ2-C,N-[3-(C6H4)-1-Me-5-Ph-(C3N2)]-CH2-Fc}Cl(L)] with L = PPh3 and M = Pd (6a) or Pt (6b) or L = dmso and M = Pt (8b) and the trans-isomer of [Pt{1-Me-3,5-Ph2-(C3N2)-CH2-Fc]}Cl2(dmso)] (7b). In compounds 4a, 5a, 5b and 7b, the ligand behaves as a neutral N-donor group; while in 6a, 6b and 8b it acts as a bidentate [C(sp2,phenyl),N(pyrazole)] group. A comparative study of the spectroscopic properties of the compounds, based on NMR, IR and UV-Visible experiments, is also reported.  相似文献   

5.
The reaction of sodium cyanopentacarbonylmetalates Na[M(CO)5(CN)] (M=Cr; Mo; W) with cationic Fe(II) complexes [Cp(CO)(L)Fe(thf)][O3SCF3], [L=PPh3 (1a), CN-Benzyl (1b), CN-2,6-Me2C6H3 (1c); CN-But (1d), P(OMe)3 (1e), P(Me)2Ph (1f)] in acetonitrile solution, yielded the metathesis products [Cp(CO)(L)Fe(NCCH3)][NCM(CO)5] [M=W, L=PPh3 (2a), CN-Benzyl (2b), CN-2,6-Me2C6H3 (2c); CN-But (2d), P(OMe)3 (2e), P(Me)2Ph (2f); M=Cr, L=(PPh3) (3a), CN-2,6-Me2C6H3 (3c); M=Mo, L=(PPh3) (4a), CN-2,6-Me2C6H3 (4c)]. The ionic nature of such complexes was suggested by conductivity measurements and their main structural features were determined by X-ray diffraction studies. Well-resolved signals relative to the [M(CO)5(CN)] moieties could be distinguished only when 13C NMR experiments were performed at low temperature (from −30 to −50 °C), as in the case of [Cp(CO)(PPh3)Fe(NCCH3)][NCW(CO)5] (2a) and [Cp(CO)(Benzyl-NC)Fe(NCCH3)][NCW(CO)5] (2b). When the same reaction was carried out in dichloromethane solution, neutral cyanide-bridged dinuclear complexes [Cp(CO)(L)FeNCM(CO)5] [M=W, L=PPh3 (5a), CN-Benzyl (5b); M=Cr, L=(PPh3) (6a), CN-2,6-Me2C6H3 (6c), CO (6g); M=Mo, L=CN-2,6-Me2C6H3 (7c), CO (7g)] were obtained and characterized by infrared and NMR spectroscopy. In all cases, the room temperature 13C NMR measurements showed no broadening of cyano pentacarbonyl signals and, relative to tungsten complexes [Cp(CO)(PPh3)FeNCW(CO)5] (5a) and [Cp(CO)(CN-Benzyl)FeNCW(CO)5] (5b), the presence of 183W satellites of the 13CN resonances (JCW ∼ 95 Hz) at room temperature confirmed the formation of stable neutral species. The main 13C NMR spectroscopic properties of the latter compounds were compared to those of the linkage isomers [Cp(CO)(PPh3)FeCNW(CO)5] (8a) and [Cp(CO)(CN-Benzyl)FeCNW(CO)5] (8b). The characterization of the isomeric couples 5a-8a and 5b-8b was completed by the analyses of their main IR spectroscopic properties. The crystal structures determined for 2a, 5a, 8a and 8b allowed to investigate the geometrical and electronic differences between such complexes. Finally, the study was completed by extended Hückel calculations of the charge distribution among the relevant atoms for complexes 2a, 5a and 8a.  相似文献   

6.
Reaction of Pd(AcO)2 with the Schiff base ligands 2-Br-4,5-(OCH2O)C6H2C(H)N(Cy) (a) and 4,5-(OCH2CH2)C6H3C(H)N(Cy) (b) leads to the cyclometallated compounds [Pd{2-Br-4,5-(OCH2O)C6HC(H)N(Cy)-C6,N}(μ-O2CMe)]2 (1a) and [Pd{4,5-(OCH2CH2)C6H2C(H)N(Cy)-C6,N}(μ-O2CMe)]2 (1b), respectively, via C-H activation. Treatment of a with Pd2(dba)3 gave [Pd{4,5-(OCH2O)C6H2C(H)N(Cy)-C2,N}(μ-Br)]2 (6a), via C-Br activation. The metathesis reaction of 1a and 1b with aqueous sodium chloride gave the corresponding cyclopalladated dimers with bridging chloride ligands, 2a and 2b, respectively. Treatment of the halogen-bridged compounds with tertiary tri- and diphosphines in the appropriate molar ratio gave the mono and dinuclear compounds 3a-5a, 7a-9a and 3b-5b. The structure of compounds 3a, 4a, 5a, 8a, 2b, 3b and 5b has been determined by X-ray diffraction analysis.  相似文献   

7.
The preparation of the barium β-diketonate complexes with crown-ethers [Ba(pta)2(18-crown-6)] (1), [Ba(pta)2(18-crown-6)] (THF) (2), [Ba(pta)2(18-dibenzocrown-6)](C6H5CH3) (3), [Ba(pta)2(18-dibenzocrown-6)] (4) (pta = 1,1,1-trifluoro-5,5-dimethylhexanedionato-2,4; 18-crown-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane; 18-dibenzocrown-6 = 6,7,9,10,17,18,20,21-octahydrodibenzo[b,k][1,4,7,10,13,16]-hexaoxacyclooctadecane) is described. The complexes 1 and 2 have been synthesized from reaction of metallic barium with 2 molar equiv. of Hpta and 1 molar equiv. of 18-crown-6 in toluene; the complexes 3 and 4 from reaction of Ba(OH)2·8H2O with 1 molar equiv. 18-dibenzocrown-6 and 2 molar equiv. Hpta. The complexes were characterized by elemental analyses, IR-spectroscopy, 1H NMR spectroscopy. The crystal structures of 2 and 3 were determined by means of single-crystal X-ray diffraction methods. A single-crystal X-ray study of 2 and 3 has shown it be monomeric. The coordination number of Barium cation in 2 and 3 is nine owing to nine oxygen atoms from two pta ligands and crown-ether molecule.  相似文献   

8.
Two hetero-binuclear complexes [CpCoS2C2(B9H10)][Rh(COD)] (2a) and [CpCoSe2C2(B10H10)][Rh(COD)] (2b) [Cp = η5-pentamethylcyclopentadienyl, COD = cyclo-octa-1,5-diene (C8H12)] were synthesized by the reactions of half-sandwich complexes [CpCoE2C2(B10H10)] [E = S (1a), Se (1b)] with low valent transition metal complexes [Rh(COD)(OEt)]2 and [Rh(COD)(OMe)]2. Although the reaction conditions are the same, the structures of two products for dithiolato carborane and diselenolato carborane are different. The cage of the carborane in 2a was opened; However, the carborane cage in 2b was intact. Complexes 2a and 2b have been fully characterized by 1H, 11B NMR and IR spectroscopy, as well as by elemental analyses. The molecular structures of 2a and 2b have been determined by single-crystal X-ray diffraction analyses and strong metal-metal interactions between cobalt and rhodium atoms (2.6260 Å (2a) and 2.7057 Å (2b)) are existent.  相似文献   

9.
The reaction of [Y(H2O)5(NCS)3]·H2O (1) with crown ether (18-crown-6) and KNCS in methanol afforded the complexes [Y(H2O)4(NCS)3]·1.5(18-crown-6) (2) and [K(18-crown-6)(H2O)1.25]2n{[K(18-crown-6)]2[Y(NCS)6]}n·n(NCS) (3). In mononuclear complex 1, yttrium has a coordination number 8 and forms the coordination unit YO5N3. Complexes 1 are linked by hydrogen bonds to form a framework. The crystal structure of 2 contains the centrosymmetric ensembles [Y(H2O)4(NCS)3]2(18-crown-6)3 formed via hydrogen bonds. In the crystal structure of 3, the [Y(NCS)6]3− anions and the [K(18-crown-6)]+ cations form one-dimensional polymeric chains (-Y-NCS-K-)n. The thermal behavior of compounds 1 and 2 was investigated. It was shown that the supramolecular assembly has an effect on the temperature range for the removal of coordinated water molecules from the thiocyanate complex. The oxidative decomposition of the acido ligands in 1 and 2 occurs in a similar way to give Y2O2SO4 as the final product (700 °С).  相似文献   

10.
11.
Reactions of ferrocene bridged and substituted tetramethylcyclopentadiene ligands 1,1′-Fc(C5Me4H)2 (1) (Fc = 1,1′-ferrocenediyl) and (C5H5FeC5H4)C5Me4H (5) with Ru3(CO)12, Fe(CO)5, and Mo(CO)3(CH3CN)3 in refluxing xylene gave the corresponding trinuclear and tetranuclear complexes Fc[(C5Me4)M(CO)]2(μ-CO)]2 [M = Ru (2), Fe (3)], Fc[(C5Me4)Mo(CO)3]2 (4) and [(C5H5 FeC5H4)C5Me4M(CO)]2(μ-CO)2 [M = Ru (6), Fe (7)], [(C5H5FeC5H4)C5Me4Mo(CO)3]2 (8). Reactions of (3-indenyl)ferrocene (9) with Ru3(CO)12 or Fe(CO)5 in refluxing xylene or heptane, also gave the corresponding tetranuclear metal complexes [(C5H5FeC5H4)C9H6M(CO)]2(μ-CO)2 [M = Ru (10), Fe (11)]. The molecular structures of 2 and 3 were determined by X-ray diffraction analysis.  相似文献   

12.
13.
New Mo(II) complexes with 2,2′-dipyridylamine (L1), [Mo(CH3CN)(η3-C3H5)(CO)2(L1)]OTf (C1a) and [{MoBr(η3-C3H5)(CO)2(L1)}2(4,4′-bipy)](PF6)2 (C1b), with {[bis(2-pyridyl)amino]carbonyl}ferrocene (L2), [MoBr(η3-C3H5)(CO)2(L2)] (C2), and with the new ligand N,N-bis(ferrocenecarbonyl)-2-aminopyridine (L3), [MoBr(η3-C3H5)(CO)2(L3)] (C3), were prepared and characterized by FTIR and 1H and 13C NMR spectroscopy. C1a, C1b, L3, and C2 were also structurally characterized by single crystal X-ray diffraction. The Mo(II) coordination sphere in all complexes features the facial arrangement of allyl and carbonyl ligands, with the axial isomer present in C1a and C2, and the equatorial in the binuclear C1b. In both C1a and C1b complexes, the L1 ligand is bonded to Mo(II) through the nitrogen atoms and the NH group is involved in hydrogen bonds. The X-ray single crystal structure of C2 shows that L2 is coordinated in a κ2-N,N-bidentate chelating fashion. Complex C3 was characterized as [MoBr(η3-C3H5)(CO)2(L3)] with L3 acting as a κ2-N,O-bidentate ligand, based on the spectroscopic data, complemented by DFT calculations.The electrochemical behavior of the monoferrocenyl and diferrocenyl ligands L2 and L3 has been studied together with that of their Mo(II) complexes C2 and C3. As much as possible, the nature of the different redox changes has been confirmed by spectrophotometric measurements. The nature of the frontier orbitals, namely the localization of the HOMO in Mo for both in C2 and C3, was determined by DFT studies.  相似文献   

14.
The new mononuclear palladium(II) and platinum(II) [M(p-SC6F4(CF3))2(dppe)] complexes M = Pd 1a, Pt 2a; [M(o-SC6H4(CF3))2(dppe)] M = Pd 1d, Pt 2d as well as the previously known [M(SC6F5)2(dppe)] M = Pd 1b, Pt 2b and [M(p-SC6HF4)2(dppe)] M = Pd 1c, Pt 2c, have been used as metalloligands for the preparation of the heteroleptic bimetallic complexes [M2(μ-SRf)2(dppe)2](SO3CF3)2 M = Pd, Rf = p-C6F4(CF3) 3a, C6F53b, p-C6HF43c, o-C6H4(CF3) 3d; M = Pt, Rf = p-C6F4(CF3) 4a, C6F54b, p-C6HF44c and o-C6H4(CF3) 4d. Variable temperature 19F NMR experiments show that the fluorothiolate bridged bimetallic compounds are fluxional in solution whereas mononuclear complexes are not. The solid state X-ray diffraction structures of [Pd(p-SC6HF4)2(dppe)] (1c), [Pt(SC6F5)2(dppe)] (2b) and [Pt(o-SC6H4(CF3))2(dppe)] (2d) show square-planar coordination around the metal centers. The solid state molecular structure of the compound [Pt2(μ-o-SC6H4(CF3))2(dppe)2](SO3CF3)2 (4d), exhibit a planar [Pt2(μ-S)2] ring with the sulfur substituents in an anti configuration.  相似文献   

15.
Treatment of [Ru3(CO)10(μ-dppm)] (4) [dppm = bis(diphenylphosphido)methane] with tetramethylthiourea at 66 °C gave the previously reported dihydrido triruthenium cluster [Ru3(μ-H)23-S)(CO)7(μ-dppm)] (5) and the new compounds [Ru33-S)2(CO)7(μ-dppm)] (6), [Ru33-S)(CO)73-CO)(μ-dppm)] (7) and [Ru33-S){η1-C(NMe2)2}(CO)63-CO)(μ-dppm)] (8) in 6%, 10%, 32% and 9% yields, respectively. Treatment of 4 with thiourea at the same temperature gave 5 and 7 in 30% and 10% yields, respectively. Compound 7 reacts further with tetramethylthiourea at 66 °C to yield 6 (30%) and a new compound [Ru33-S)21-C(NMe2)2}(CO)6(μ-dppm)] (9) (8%). Thermolysis of 8 in refluxing THF yields 7 in 55% yield. The reaction of 4 with selenium at 66 °C yields the new compounds [Ru33-Se)(CO)73-CO)(μ-dppm)] (10) and [Ru33-Se)(μ33-PhPCH2PPh(C6H4)}(CO)6(μ-CO)] (11) and the known compounds [Ru3(μ-H)23-Se)(CO)7(μ-dppm)] (12) and [Ru43-Se)4(CO)10(μ-dppm)] (13) in 29%, 5%, 2% and 5% yields, respectively. Treatment of 10 with tetramethylthiourea at 66 °C gives the mixed sulfur-selenium compounds [Ru33-S)(μ3-Se)(CO)7(μ-dppm)] (14) and [Ru33-S)(μ3-Se){η1-C(NMe2)2}(CO)6(μ-dppm)] (15) in 38% and 10% yields, respectively. The single-crystal XRD structures of 6, 7, 8, 10, 14 and 15 are reported.  相似文献   

16.
The reaction between 1-pyrenecarboxaldehyde (C16H9CHO) and the labile triosmium cluster [Os3(CO)10(CH3CN)2] gives rise to the formation of two new compounds by competitive oxidative addition between the aldehydic group and an arene C-H bond, to afford the acyl complex [Os3(CO)10(μ-H)(μ-COC16H9)] (1) and the compound [Os3(CO)10(μ-H) (C16H8CHO)] (2), respectively. Thermolysis of [Os3(CO)10(μ-H)(μ-C16H9CO)] (1) in n-octane affords two new complexes in good yields, [Os3(CO)9(μ-H)2(μ-COC16H8)] (3) and the pyryne complex [Os3(CO)9(μ-H)23112-C16H8)] (4).In contrast, when 1-pyrenecarboxaldehyde reacts with [Ru3(CO)12] only one product is obtained, [Ru3(CO)9(μ-H)23112-C16H8)] (5), a nonacarbonyl cluster bearing a pyrene ligand. All compounds were characterized by analytical and spectroscopic data, and crystal structures for 1, 2, 4 and 5 were obtained.  相似文献   

17.
The ortho-metallated complexes [Pd22(C,C)-C6H4(PPh2CHC(O)C6H5R}2(μ-Cl)2] (R = Ph (1a), NO2 (1b), Br (1c)) were prepared by refluxing equimolar mixtures of Ph3PCHC(O)C6H5R, (R = Ph, NO2, Br) and Pd(OAc)2 in MeOH, followed by an excess of NaCl. The dinuclear complexes (1a-1c) react with silver trifluoromethylsulfonate and bidentate ligands [L = bipy (2,2′-bipyridine), phen (phenanthroline), dppe (bis(diphenylphosphino)ethane), dppp (bis(diphenylphosphino)propane)] giving the mononuclear stabilized orthopalladated complexes in endo position [Pd{κ2(C,C)-C6H4(PPh2CHC(O)R}L](OTf) [R = Ph, L = phen (2a), bipy (3a), dppe (4a), dppp (5a); R = NO2, L = phen (2b), bipy (3b), dppe (4b), dppp (5b); R = Br, L = phen (2c), bipy (3c), dppe (4c), dppp (5c); OTf = trifluoromethylsulfonate anion]. Orthometalation and ylidic C-coordination are demonstrated by an X-ray diffraction study of 2c and 3c. In the structures, the palladium atom shows a slightly distorted square-planar coordination geometry.  相似文献   

18.
The study of the reactivity of the ferrocenyliminoalcohol [(η5-C5H5)Fe{(η5-C5H4)-CHN-(C6H4-2OH)}] (1b) with Na2[PdCl4] or Pd(OAc)2 has allowed the isolation and characterization of the heterotrimetallic complexes: trans-[Pd{(η5-C5H5)Fe[(η5-C5H4)-CHN-(C6H4-2OH)]}2Cl2] (2b), [Pd{[(η5-C5H3)-CHN-(C6H4-2O)]Fe(η5-C5H5)}{(η5-C5H5)Fe[(η5-C5H4)-CHN-(C6H4-2OH)]}] (3b) and trans-[Pd{(η5-C5H5)Fe[(η5-C5H4)-CHN-(C6H4-2O)]}2] (4b). Ligand 1b acts as a (N) (in 2b) or a (N,O) (in 4b) ligand; while in 3b the two units of the iminoalcohol exhibit simultaneously different modes of binding {(N) and [C(sp2, ferrocene),N,O]2−}. The crystal structures of 2b · 3H2O and 3b · 1/2CHCl3 are also reported and confirm the mode of binding of the ligand in these compounds. The relative importance of the factors affecting the preferential formation of products (2b-4b) is also discussed. The study of the reactivity of 3b with PPh3 has enabled the obtention of the cyclopalladated complexes [Pd{[(η5-C5H3)-CHN-(C6H4-2O)]Fe(η5- C5H5)}(PPh3)] (6b) and [Pd{[(η5-C5H3)-CHN-(C6H4-2OH)]Fe(η5-C5H5)}Cl(PPh3)] (7b), in which 1b behaves as a [C(sp2, ferrocene),N,O]2− (in 6b) or [C(sp2, ferrocene),N] (in 7b) ligand. Treatment of 3b with MeO2C-CC-CO2Me produces [Pd{[(MeO2C-CC-CO2Me)25-C5H3)-CHN-(C6H4-2O)]Fe(η5-C5H5)}] (8b), that arises from the bis(insertion) of the alkyne into the σ[Pd-C(sp2, ferrocene)] bond. The comparison of the results obtained for 1b and [C6H5-CHN-(C6H4-2OH)] (1a) has allowed to establish the influence of the substituents on the imine carbon on their reactivity in front of palladium(II) as well as on the lability of the Pd-ligands bond. 57Fe Mössbauer studies of 2b-4b and 6b provide conclusive evidence of the effect induced by the mode of binding of 1b on the environment of the iron(II).  相似文献   

19.
The precursor 1-(9-anthracenylmethyl)-3-alkylbenzimidazolium chlorides (1a, alkyl = C4H9, 1b, alkyl = C6H13) and their three new NHC silver(I) and mercury(II) complexes {[1-(9-anthracylmethyl)-3-alkylbimy]MCl}2 (2a, alkyl = C4H9, M = Ag; 2b, alkyl = C6H13, M = Ag; 3a, alkyl = C4H9, M = Hg; bimy = benzimidazol-2-ylidene) have been prepared and characterized. The crystal structures of 2a, 2b and 3a showed that 2-D supramolecular layers are formed by both benzimidazole ring head to tail π-π stacking interactions and anthracene ring face-to-face π-π stacking interactions.  相似文献   

20.
The synthesis of biferrocene-bridged NCN pincer palladium and platinum complexes (NCN = [1-C6H2(CH2NMe2)2-3,5]) is discussed. Sonogashira cross-coupling of [(η5-C5H4)Fe(η5-C5H4CCH)]2 (1) with I-1-NCN-4-X (2a, X = H; 2b, X = Br) produces [(η5-C5H4)Fe(η5-C5H4CC-1-NCN-4-X)]2 (3a, X = H; 3b, X = Br). Homobimetallic 3b further reacts with [Pd2(dba)3 · CHCl3] (4) or [Pt(tol)2(SEt2)]2 (5) (dba = dibenzylidene acetone, tol = 4-tolyl), respectively, to give tetrametallic [(η5-C5H4)Fe(η5-C5H4CC-4-NCN-1-MBr)]2 (6, M = Pd; 7, M = Pt) in which NCN-MBr fragments are connected by a biferrocene unit. Cyclovoltammetric studies show that the ferrocene moieties can independently be oxidized. The difference of the Fe(II)/Fe(III) redox couples amounts to ca. 300 mV and is not affected by the nature of the NCN pincer metal moities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号