首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Bi0.9Sb0.1 powders were prepared by mechanical alloying and then pressed under 6 GPa at different pressing temperatures. X-ray diffraction spectra showed that the single phase was formed. The nanostructure of grain was observed by bright-field imaging. Electrical conductivity, Seebeck coefficient, and thermal conductivity had been investigated in the temperature range of 80-300 K. The absolute Seebeck coefficient value of 120.3 μV/K was measured at 130 K. The figure-of-merit reached a maximum value of 0.90×10−3 K−1 at 140 K.  相似文献   

2.
We show that by Ca doping the Bi2Se3 topological insulator, the Fermi level can be fine tuned to fall inside the band gap and therefore suppresses the bulk conductivity. Non-metallic Bi2Se3 crystals are obtained. On the other hand, the Bi2Se3 topological insulator can also be induced to become a bulk superconductor, with Tc∼3.8 K, by copper intercalation in the van der Waals gaps between the Bi2Se3 layers. Likewise, an as-grown crystal of metallic Bi2Te3 can be turned into a non-metallic crystal by slight variation in the Te content. The Bi2Te3 topological insulator shows small amounts of superconductivity with Tc∼5.5 K when reacted with Pd to form materials of the type PdzBi2Te3.  相似文献   

3.
Using either single crystalline, epitaxially grown p-type CuGaSe2 (CGSe) films in Schottky diodes or polycrystalline p-CuGaSe2/n-CdS single-junction solar cells, we employed thermal admittance spectroscopy (TAS) to gain insight into the electronic transport mechanisms of CGSe. In both types of devices, the capacitance decreases about 50% to its geometrical value in a frequency dependent step between 250 and 150 K. For the Schottky diodes, this capacitance step reflects the response of the shallowest acceptors whose energy level is located 150 meV above the valence band. In the solar cells, a comparable response occurs but is superposed by carrier freeze-out outside the space-charge region.  相似文献   

4.
Bismuth selenotelluride (Bi2(Te0.9Se0.1)3) films were electrodeposited at constant current density from acidic aqueous solutions with Arabic gum in order to produce thin films for miniaturized thermoelectric devices. X-ray fluorescence spectroscopy determined film compositions. X-ray diffraction pattern shows that the films as deposited are polycrystalline, isostructural to Bi2Te3 and covered by crystallites. Mueller-matrix analysis reveals that the electroplated layers are optically like an isotropic medium. Their pseudo-dielectric functions were determined using mid-infrared spectroscopic ellipsometry. Tauc-Lorentz combined with Drude dispersion relations were successfully used. The energy band gap Eg was found to be about 0.15 eV. Moreover, the fundamental absorption edge was described by an indirect optical band-to-band transition. From Seebeck coefficient measurement, films exhibit n-type charge carrier and the value of thermoelectric power is about −40 μV/K.  相似文献   

5.
The nanocrystalline materials with the general formula Bi85Sb15−xNbx (x=0, 0.5, 1, 2, 3) were prepared by mechanical alloying and subsequent high-pressure sintering. Their transport properties involving electrical conductivity, Seebeck coefficient and thermal conductivity have been investigated in the temperature range of 80-300 K. The absolute value of Seebeck coefficient of Bi85Sb13Nb2 reaches a maximum of 161 μV/K at 105 K, which is 69% larger than that of Bi85Sb15 at the same temperature. The power factor and figure-of-merit are 4.45×10−3 WK−2m−1 at 220 K and 1.79×10−3 K−1 at 196 K, respectively. These results suggest that thermoelectric properties of Bi85Sb15 based material can be improved by Nb doping.  相似文献   

6.
nanostructures were synthesized by using different Bi sources via a simple solvothermal process, in which and BiCl3 were used as the Bi sources. Optical properties of nanostructures prepared with and BiCl3 as the Bi sources were investigated by micro-Raman spectroscopy. The Raman scattering spectrum of hexagonal nanoplates prepared by using as the Bi source shows that the infrared (IR) active mode A1u, which must be odd parity and is Raman forbidden for bulk crystal due to its inversion symmetry, is greatly activated and shows up clearly in the Raman scattering spectrum. We attribute the appearance of the infrared active A1u mode in the Raman spectrum to crystal symmetry breaking of hexagonal nanoplates. However, the Raman scattering spectrum of nanostructures with irregular shape prepared by using as the Bi source only exhibits the two characteristic Raman modes of crystals. Micro-Raman measurements on nanostructures with different morphologies offer us a potential way to tailor optical properties of nanostructures by controlling the morphologies of the nanostructures, which is very important for practical applications of nanostructures in thermoelectric devices.  相似文献   

7.
Investigations have been performed on lanthanum-modified layered ferroelectric bismuth titanate for composition Bi3.25La0.75Ti3O12 (BLT) using impedance spectroscopy to understand the role of microstructure on the dielectric properties of this important material. A wide range of frequency and a wide range of temperature passing through the Curie point were chosen for the measurement. The frequency dependence suggested an interfacial polarization controlled Maxwell–Wagner type relaxation at low frequencies, and the impedance spectrum correlated with the mathematical fitting indicated the presence of two types of interfaces, which were attributed to the metallurgical boundaries and the twinned planes parallel to the bismuth oxide layers inherent to the crystal structure within the metallurgical grains. A careful analysis of the dielectric properties, particularly the ac-conductivity analysis revealed that the grain boundaries did also follow their own Jonscher-like relaxation, and the overall relaxation of the sample changed to a purely grain boundary-limited response at low frequency to a pure grain-limited response at higher frequencies. And overall admittance of the ceramic sample neither follow unmodified nor modified Jonscher's law rather its behaviour can be well described by series addition of Jonscher's admittance corresponding to grain boundary and grain. It was demonstrated that the frequency response of the ac conductivity was related to the microstructure exactly in the same way as any other dielectric function, like the impedance or dielectric constant, a fact, which is not much emphasized in the open literature.  相似文献   

8.
Bi2O3/SrTiO3 composite powders have been prepared and their photocatalytic activities were investigated by photooxidation of methanol. These powders were characterized by UV-Visible diffuse reflectance spectra, SEM and X-ray diffraction (XRD). The results revealed that all the Bi2O3/SrTiO3 composite powders exhibited higher photocatalytic activity than pure SrTiO3, Bi2O3 and TiO2 (P25) under visible light irradiation (λ>440 nm). The effects of the Bi2O3 contents on the photocatalytic activities of the composite powders were examined, the photocatalytic activities increased with the content of Bi2O3 increasing to a maximum of 83% and then decreased under visible light irradiation. The effects of the calcination temperatures on the photocatalytic activities of the composite powders were also investigated.  相似文献   

9.
The Ruddlesden–Popper (RP) phase compounds (Sr0.95R0.05)3Ti2O7 (R=Er, Y, Dy, Gd, Eu, Sm, Nd and La) were prepared, and their transport and thermoelectric properties were investigated. The results indicate that high-T electrical resistivity ρ (300 K<T<1000 K) increases monotonically with temperature and basically has a relation ρTM, with M varying from 0.91 to 1.92 at temperatures T>~650 K, suggesting acoustic phonon scattering is dominant. At low temperatures (5 K<T<300 K), ρ for (Sr0.95R0.05)3Ti2O7 (R=Nd and La) decreases monotonously with decreasing temperature, whereas ρ for (Sr0.95R0.05)3Ti2O7 (R=Er, Y, Dy, Gd, Eu and Sm) decreases first, and then increases instead as T decreases to a critical temperature Tc. Moreover, electrical conductivity σT1/2 holds at lower temperatures, indicating that the electron–electron interaction caused by the presence of disorder dominates the transport process at the low temperatures. Besides, experiments show that at T<~400 K the lattice thermal conductivity of the doped compounds basically decreases with increase of the atomic mass of dopants. Generally, the figure of merit (ZT) at 1000 K increases first, and then decreases with the increase of the dopants' ionic radius, and the largest ZT is achieved in (Sr0.95Gd0.05)3Ti2O7 mainly owing to its lower lattice thermal conductivity.  相似文献   

10.
Highly (00l)-oriented pure Bi2Te3 films with in-plane layered grown columnar nanostructure have been fabricated by a simple magnetron co-sputtering method. Compared with ordinary Bi2Te3 film and bulk materials, the electrical conductivity and Seebeck coefficient of such films have been greatly increased simultaneously due to raised carrier mobility and electron scattering parameter, while the thermal conductivity has been decreased due to phonon scattering by grain boundaries between columnar grains and interfaces between each layers. The power factor has reached as large as 33.7 μW cm−1 K−2, and the out-of-plane thermal conductivity is reduced to 0.86 W m−1 K−1. Our results confirm that tailoring nanoscale structures inside thermoelectric films effectively enhances their performances.  相似文献   

11.
Temperature dependences of the Hall coefficient, Hall mobility and thermoelectric properties of Ni-doped CoSb3 have been characterized over the temperature range from 20 to 773 K. Ni-doped CoSb3 is an n-type semiconductor and the conduction type changes from n-type to p-type at around 450 K. The temperature for the transition from n-type to p-type increased with increasing Ni content x. The Seebeck coefficient reaches a maximum value near the transition temperature. The electrical resistivity indicates that Co1−xNixSb3 is a typical semiconductor when x≤0.03 and a degenerate semiconductor when x>0.03. Thermal conductivity analyses show that the lattice component is predominant at lower temperatures and carrier and bipolar components become large at temperatures higher than the transition temperature. The thermoelectric figure of merit reaches a maximum value close to the transition temperature and the largest value, 4.67×10−4 K−1 at 600 K, was obtained for x=0.05.  相似文献   

12.
Undoped and p- and n-doped AgSbX2 (X=Se and Te) materials were synthesized by direct fusion technique. The structural properties were investigated by X-ray diffraction and SEM microscopy. The electrical conductivity, thermal conductivity and Seebeck coefficient have been measured as a function of temperature in the range from 300 to 600 K.To enlighten electron transport behaviours observed in AgSbSe2 and AgSbTe2 compounds, electronic structure calculations have been performed by the Korringa-Kohn-Rostoker method as well as KKR with coherent potential approximation (KKR-CPA) for ordered (hypothetical AgX and SbX as well as AgSbX2 approximates) and disordered systems (Ag1−xSbxX), respectively. The calculated density of states in the considered structural cases shows apparent tendencies to opening the energy gap near the Fermi level for the stoichiometric AgSbX2 compositions, but a small overlap between valence and conduction bands is still present. Such electronic structure behaviour well agrees with the semimetallic properties of the analyzed samples.  相似文献   

13.
This paper presents a study of bulk samples synthesized of the Ag1−xCuxInSe2 semiconductor system. Structural, thermal and electrical properties, as a function of the nominal composition (Cu content) x=0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 were studied. The influence of x on parameters such as melting temperature, solid phase transition temperature, lattice parameters, bond lengths, crystallite size t (coherent domain), electrical resistivity, electrical mobility and majority carrier concentration was analyzed. The electrical parameters are analyzed at room temperature. In general, it is observed that the properties of the Ag1−xCuxInSe2 system for x≤0.4 are dominated by n-AgInSe2, while for x>0.4, these are in the domain of p-CuInSe2. The crystallite size t in the whole composition range (x) is of the order of the nanoparticles. Secondary phases (CuSe, Ag2Se and InSe) in small proportion were identified by XRD and DTA.  相似文献   

14.
EuCo2(Si1−xGex)2, x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 samples were synthesised by induction melting followed by annealing at 900 °C and rapid quenching. X-ray powder diffraction and Auger electron spectroscopy studies revealed that solid solutions are formed only for x?0.2 and x?0.7. Magnetic susceptibility investigations for the solid solutions revealed a dominant divalent europium valence state in the germanium-rich samples and a dominant trivalent europium component in the silicon-rich samples. In the germanium-rich samples, a long-range antiferromagnetic ordering was observed. In all samples studied, additional magnetic transitions at various temperatures were detected, which could be attributed to small clusters containing different europium chemical surrounding from that in the predominant phase.  相似文献   

15.
Gold-coated nanoparticles of Fe20Ni80 (permalloy) have been synthesized by a microemulsion process. The as-prepared samples consist of ∼5 nm diameter particles of amorphous Fe20Ni80 that are likely encapsulated in B2O3. One or more Fe20Ni80@B2O3 particles are subsequently encapsulated in 8-20 nm gold nanospheres, as determined by TEM and X-ray powder diffraction (XRD) line broadening. The gold shells were found to be under expansive strain. Magnetic data confirm the existence of a superparamagnetic phase with a blocking temperature, TB, of ∼33 K. The saturation magnetization, MS, of the as-prepared, Au-coated sample is ∼65 emu g−1 at 5 K and ∼16 emu g−1 at 300 K. The coercivity, HC, is ∼280 Oe at 5 K.  相似文献   

16.
Spectroscopic ellipsometry measurements of CuInSe2 (CIS) and CuIn1−xGaxSe2 (CIGS) over a range of Cu compositions reveal that there are important differences in electronic and optical properties between α-phase CIS/CIGS and Cu-poor CIS/CIGS. We find a reduction in the imaginary part of the dielectric function ?2 in the spectral region, 1-3 eV. This reduction can be explained in terms of the Cu-3d density of states. An increase in band gap is found for Cu-poor CIS and CIGS due to the reduction in repulsive interaction between Cu-3d and Se-4p states. We also characterize the dielectric functions of polycrystalline thin-film α-phase CuIn1−xGaxSe2 (x=0.18 and 0.36) to determine their optical properties and compare them with similar compositions of bulk polycrystalline CuIn1−xGaxSe2. The experimental results have important implications for understanding the functioning of polycrystalline optoelectronic devices.  相似文献   

17.
Magnetic susceptibility χ measurements in the range from 2 to 300 K were carried out on samples of the Cu2FeSnSe4 and Cu2MnSnSe4 compounds. It was found that Cu2FeSnSe4 was antiferromagnetic showing ideal Curie-Weiss behavior with a Néel temperature TN of about 19 K and Curie-Weiss temperature θ=−200 K, while for Cu2MnSnSe4 the behavior was spin-glass with a freezing temperature Tf of about 22 K and Curie-Weiss temperature θ=−25 K. The spin-glass order parameter q(T), determined from the susceptibility data, was found to be in agreement with the prediction of conventional spin-glass theory.  相似文献   

18.
The dielectric properties and loss of Bi1.5ZnSb1.5O7 a poor-semiconducting ceramic were investigated by impedance spectroscopy, in the frequency range from 5 Hz to 13 MHz. Electric measurements were performed from 100 to 700 °C. Pyrochlore type phase was synthesized by the polymeric precursor method. Dense ceramic with 97% of the theoretical density was prepared by sintering via constant heating rate. The dielectric permittivity dependence as a function of frequency and temperature showed a strong dispersion at frequency lower than 10 kHz. The losses exhibit slight dependence with the frequency at low temperatures presenting a strong increase at temperatures higher than 400 °C. A decrease of the loss magnitude occurs with increasing frequency. Relaxation times were extracted using the dielectric functions Z″(ω) and M″(ω). The plots of the relaxation times τZ and τM as a function of temperature follow the Arrhenius law, where a single slope is observed with activation energy values equal to 1.38 and 1.37 eV, respectively.  相似文献   

19.
Bi100−xSbx (x=8-17) alloys were prepared by direct melting of constituent elements, which was followed by quenching and annealing. The synthesis of high-homogeneity alloys was confirmed by X-ray diffraction, differential thermal analyses and electron microprobe analysis. The semiconducting and thermoelectric properties of the samples were investigated by measuring Hall coefficient, electrical resistivity and Seebeck coefficient in the temperature range from 20 to 300 K for both the as-quenched and annealing samples. The properties change gradually with the Sb concentration x, which is attributed to the variation of the energy gap. The Hall mobility was enhanced by annealing, which leads to a small electrical resistivity and a large Seebeck coefficient. Consequently, large values of about 8.5 mW/mK2 for the power factor were obtained in the annealed alloys of x=8,12, and 14.  相似文献   

20.
The evaluation of free carrier concentration based on Drude's theory can be performed by the use of optical transmittance in the range 800-2000 nm (near infrared) for Sb-doped SnO2 thin films. In this article, we estimate the free carrier concentration for these films, which are deposited via sol-gel dip-coating. At approximately 900 nm, there is a separation among transmittance curves of doped and undoped samples. The plasma resonance phenomena approach leads to free carrier concentration of about 5×1020 cm−3. The increase in the Sb concentration increases the film conductivity; however, the magnitude of measured resistivity is still very high. The only way to combine such a high free carrier concentration with a rather low conductivity is to have a very low mobility. It becomes possible when the crystallite dimensions are taken into account. We obtain grains with 5 nm of average size by estimating the grain size from X-ray diffraction data, and by using line broadening in the diffraction pattern. The low conductivity is due to very intense scattering at the grain boundary, which is created by the presence of a large amount of nanoscopic crystallites. Such a result is in accordance with X-ray photoemission spectroscopy data that pointed to Sb incorporation proportional to the free electron concentration, evaluated according to Drude's model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号