首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A model for the pressure and temperature dependence of the magnetic contributions to the Gibbs energy of ferromagnetic and antiferromagnetic elements is presented. These contributions are described by three parameters: (1) a critical temperature which is represented by the Curie temperature for ferromagnetic elements or Néel temperature for antiferromagnetic elements, (2) the pressure dependence of that critical temperature, (3) the average magnetic moment per atom. Using thermal expansion data, all these parameters and consequently the pressure and temperature dependence of the magnetic contribution can be calculated. Nickel, a ferromagnetic element, is used as an example.  相似文献   

2.
For the first time, the phonon energy per unit volume in a large anharmonic quasi-one-dimensional solid is determined by considering all polarizations of the various modes of phonon propagation and by assuming the solid as a lattice of atoms behaving as the Morse oscillators. In this context the equilibrium phonon occupation number, which is given by the Bose distribution, replaces formally the vibrational quantum number into the expression for the Morse-oscillator energy. In addition, the quasi-harmonic solid is discussed within the above framework so that the phonon energy per unit volume is calculated for a large quasi-harmonic and quasi-one-dimensional solid.  相似文献   

3.
4.
Magnetic behavior of a spin-1 Heisenberg dimer is analysed in dependence on the both uniaxial single-ion anisotropy and XXZ exchange anisotropy in a zero- as well as non-zero longitudinal magnetic field. A complete set of eigenfunctions and eigenvalues of the total Hamiltonian is presented together with an exact analytical expression for the Gibbs free energy, longitudinal magnetization, longitudinal and transverse susceptibility. The obtained theoretical results are compared with the relevant experimental data of [Ni2(Medpt)2(μ-ox)(H2O)2](ClO4)2·2H2O (Medpt=methyl-bis(3-aminopropyl)amine).  相似文献   

5.
A particularly simple equation of state derived from the definitions of the compressibility k and the volume thermal expansion β of homogeneous condensed phases is applied to 100 solid elemental species, which are found to show two types of colligative characteristics: typical elements whose compressibility and expansivity depend on the packing coefficient of the crystal structures and isovalent elements whose values of k and β depend on the valence of the element in the solid state.  相似文献   

6.
Development of metal borohydrides for hydrogen storage   总被引:1,自引:0,他引:1  
A metal borohydride M(BH4)n is a potential candidate for hydrogen storage materials because of its high gravimetric hydrogen density. The important research issues for M(BH4)n are to control the thermodynamic stability and to achieve the faster reaction kinetics. To clarify the thermodynamic stability, M(BH4)n (M=Mg, Ca∼Mn, Zn, Al, Y, Zr and Hf; n=2-4) were synthesized by mechanical milling and its thermal desorption properties were investigated. The hydrogen desorption temperature Td of M(BH4)n decreases with increasing Pauling's electronegativities χP of M. Because Mn, Zn, and Al borohydrides (χP?1.5) desorb borane, they are too unstable for hydrogen storage applications. The enthalpy changes of desorption reaction ΔHdes can be estimated by using our predicted heat of formation of M(BH4)n ΔHboro and reported data for decomposed products ΔHprod, which are useful indicators for searching M(BH4)n with appropriate stability for hydrogen storage material. In the latter case, microwave processing was adopted for achieving fast reaction kinetics. Among metal borohydrides, LiBH4 was rapidly heated above 380 K by microwave irradiation, 13.7 mass% of hydrogen was desorbed by microwave irradiation. The composites of LiBH4 with B or C desorbed hydrogen within 3 min. Microwave heating aids in realizing faster kinetics of the hydrogen desorption reaction.  相似文献   

7.
Two groups of effective pair-potentials are studied from the viewpoint of their suitability in being able to describe solid state properties and liquid state structure of noble metals Cu, Ag and Au over a wide temperature range. Since the effective pair-potentials are usually empirical in nature, with parameters obtained by fitting to some reference state properties, the objective of the present study is to determine whether a particular parametrization scheme has any definite advantage over another. We consider Morse potentials with parameters determined by equilibrium lattice parameter, cohesive/sublimation energies as well as bulk modulus values of the solid at low/room temperatures. The other group of potentials considered is Erkoç potentials, where the parameters were determined first by studying dimers and further modified using bulk stability condition and bulk cohesive energy values. The potentials were then used to study the energetics of microclusters containing 3–7 atoms. Quasiharmonic results for the solid obtained at different temperatures and Monte Carlo simulation for the liquid state show that phonon spectra, thermal expansion, temperature-dependence of specific heats and liquid structure are much better described by the latter group. The first group of potentials may have an advantage in reproducing the temperature-dependence of elastic constants and bulk moduli, since they are based on room temperature values of these properties, which show only weak temperature-dependence in general for all metals. It is argued that potentials based on parameters fitted to the properties at a single volume are less versatile in capturing the temperature-dependence of various thermodynamic properties over a wide range. Potentials capable of reproducing the energetics of clusters of different co-ordination numbers and volumes per atom may fare better in this regard.  相似文献   

8.
Porous Ni-YSZ (YSZ—yttria-stabilized zirconia) films were fabricated by reactive co-sputtering of a Ni and a Zr-Y target, followed by sequentially annealing in air at 900 °C and in vacuum at 800 °C. The Ni-YSZ films comprised small grains and pores that were tens of nanometers in size. The porous Ni-YSZ films were used as an anode on one side of a YSZ electrolyte disc and a La0.7Sr0.3MnO3 thick film was used as a cathode on the other side of the disc to form solid oxide fuel cells (SOFCs). The voltage-current curves of the SOFCs with single- and a triple-layered porous anodes were measured in a single-chamber configuration, in a mixture of CH4 and air (CH4:O2 volume ratio=2:1). The maximum power density of the SOFC using the single-layered porous Ni-YSZ thin films as the anode was 0.38 mW cm−2, which was lower than that of 0.76 mW cm−2, obtained using a screen-printed Ni-YSZ thick anode. The maximum power density of the SOFC with a thin anode was increased, but varied between 0.6 and 1.14 mW cm−2 when a triple-layered porous Ni-YSZ anode was used.  相似文献   

9.
10.
A model has been developed to account for the size dependent cohesive energy and melting temperature of nanocrystals. This model can deal with the thermodynamic properties of nanoparticles (spherical and non-spherical), nanowires and nanofilms with free surface or non-free surface (embedded in a matrix). The cohesive energy depression of nanocrystals has been predicted, and the conditions of superheating are obtained. It is found that the present theoretical results are consistent with the available experimental values.  相似文献   

11.
The Vogel—Fulcher-Tammann-Hesse (VFTH) equation has been the most widespread tool for describing the temperature dependence with viscosity for strong, moderate and fragile glass-forming liquids. In this work, the VFTH equation was applied over a wide temperature range (between the glass transition temperature, Tg, and the melting point, Tm) for 38 oxide glasses, considering simple, binary and ternary compositions of silicate and borate systems. The Levenberg-Marquart non-linear fitting procedure was used to assess VFTH viscosity parameters B and T0, maintaining A=−5 fixed (in Pa·s) to reduce the number of adjustable parameters. Regarding this restriction, the VFTH formula has shown to adjust very well to experimental data in a wide temperature range. Previous assertions revealed that there is statistical correlation between B and T0. Principal component analysis (PCA) was used in the present study to verify the correlation between the B and T0 parameters [J. F. Mano, E. Pereira, J. Phys. Chem. A 108 (2004) 10824], as well as between Tg and Tm. In brief, PCA is a mathematical method aimed at reorganizing information from data sets. The results have shown that it is possible to map either borate (and almost fragile) or silicate (usually strong up to near fragile) systems. As a statistical tool, PCA justifies the use of B, T0 and Tg as the main parameters for the fragility indexes m=d(log10η)/d(Tg/T)|T=Tg and D=B/T0, where η is the viscosity and T the absolute temperature.  相似文献   

12.
Silver-modified silicon nanowires were obtained and employed as catalysts in the decomposition of fluorescein sodium using sodium borohydride (SB) as a reducing agent. Their decomposition rate enhanced ca. 6 times compared to that of unsupported Ag nanoparticle catalysts, which demonstrated the excellent catalytic activity of silver-modified silicon nanowires.  相似文献   

13.
In the present paper three natural minerals used in many industrial and environmental applications namely zeolite clinoptilolite and the clays bentonite and vermiculite are studied by utilising ion exchange and adsorption. In particular, the Dubinin-Astakhov adsorption isotherm is used modified by introducing a solubility-normalized adsorption potential for studying the ion exchange process. The equation, is applied in experimental isotherms in order to determine adsorption energy and heterogeneity parameter for the ion exchange of Pb2+ in the natural minerals. The results indicate that the modified Dubinin-Astakhov adsorption isotherm represents the experimental data well and at the same time provides the heterogeneity parameter of the materials, which is an important adsorbent physical parameter as well as the adsorption energy. In order to deepen the study and link the results to the pore structure BET analysis is presented as well.  相似文献   

14.
Gibbs free energies of formation of six Ce–Cd intermetallic compounds, CeCd, CeCd2, CeCd3, CeCd58/13, CeCd6 and CeCd11, were evaluated systematically using electrochemical techniques in the temperature range of 673–923 K in the LiCl–KCl–CeCl3–CdCl2 molten salt bath. The linear dependence of the Gibbs free energies of formation on temperature yields to the enthalpies and entropies of formation of these intermetallic compounds. By extrapolating the Gibbs free energy of Ce–Cd intermetallic compounds to the Cd distillation temperature, it was clear that the Gibbs free energy of Ce–Cd intermetallic compounds decreases gradually from CeCd6 to CeCd2 and attains minimum value at CeCd2. This suggests on the Cd distillation from the U–Pu–Ce–Cd alloy that the dissolution of U or Pu into CeCd2 should be mostly taken into consideration.  相似文献   

15.
16.
A model has been developed to account for size, shape, surface segregation, composition and dimension dependent cohesive energy of bimetallic nanosolids, and further been extended to predict the size dependent thermodynamic properties, such as melting temperature, Curie temperatures, ordering temperature and phase diagram. The cohesive energy, melting temperature, Curie temperatures and ordering temperature of bimetallic nanosolids decrease with decreasing the particle size. The depression is dramatic in the lower range of size, while it becomes smoothly in large size. For nano phase diagram, the solidus and liquidus curves drop and the two-phase zones become small, as the size of the nanosolids decreases. The two-phase zones of the nano phase are always lower than the regions indicated in the bulk Ag-Pd alloy phase diagram, and they may deteriorate into a curve at a critical size. It is also found that the thermodynamic properties of nanosolids not only depend on the compositions, the atomic diameter and the cohesive energy of each component, but also depend on the size and the shape. The model predictions are consistent with the corresponding simulation, semi-empirical model and experimental data.  相似文献   

17.
Here we present a model describing the particle size dependence of the oxidation enthalpy of aluminum nanoparticles. The model includes the size dependence of the cohesive energy of the reactant particles, the size dependence of the product lattice energy, extent of product agglomeration, and surface capping effects. The strongest effects on aluminum nanoparticle energy release occur for particle diameters below 10 nm, with enhanced energy release for agglomerated oxide products and decreased energy release for nanoscale oxide products. An unusual effect is observed with all nanoparticle reaction enthalpies converging to the bulk value when agglomeration of the products approaches the transition between nanoparticle→nanoparticle and nanoparticle→bulk energetics. Optimal energy output for Al NP oxidation should occur for sub-10-nm particles reacting with significant agglomeration.  相似文献   

18.
The present work aims to correlate, in time, macroscale and microscale phenomenological evolutions of the microstructure of Fe and FeZn alloys processed by mechanical milling (MM) and alloying (MA), respectively. Powders were characterized for particle size distribution (PSD), particle morphology (optical microscopy, OM, scanning electron microscopy, SEM), microhardness, crystallite size, differential scanning calometry (DSC) and transmission electron microscopy (TEM). Two macroscopic regimes of PSD behavior were distinguished: the first one dominated by the cold welding process; and, the other where both fracture and agglomeration play a significant role. Solid solubilization of Zn on bcc Fe was found to reduce the final microhardness as well as increase the lattice parameter and is very well predicted by Miedema's thermodynamical approach. Microhardness and solid solution formation kinetics were correlated in time and both could be precisely described by a logistic function. After 5 h of planetary milling, microhardness and the lattice parameter become stable as well as the PSD and particle morphology, indicating that the system has already reached steady state. Indeed, this condition can be monitored by both macroscopic and microscopic parameters. Prior to an homogeneous powder, DSC results suggest an endothermic solid-state amorphization reaction for samples processed for up to 1 h as a result of the formation of clean Fe/Zn interfaces during MA.  相似文献   

19.
Magnesium hydride remains an attractive hydrogen storage material due to the high hydrogen capacity and low cost of production. A high activation energy and poor kinetics at practical temperatures for the pure material have driven research into different additives to improve the sorption properties. This review details the development of catalytic additives and their effect on the activation energy, kinetics and thermodynamic properties of magnesium hydride.  相似文献   

20.
Binary thermodynamic data, successfully used for phase diagram calculations of binary systems Bi-Ga, Bi-Sn, and Ga-Sn, were used for prediction of phase equilibria in ternary Bi-Ga-Sn system. The thermodynamic functions, such as enthalpy of formation and activity, were calculated using the Redlich-Kister-Muggianu model and compared with experimental data reported in the literature. The liquidus surface, invariant equilibria and three vertical sections with molar ratio Ga:Sn=1, Bi:Sn=1 and Bi:Ga=1 of the Bi-Ga-Sn ternary system were calculated by the CALPHAD method. Alloys, situated along three calculated vertical sections, were investigated by Differential Scanning Calorimetry (DSC). The experimentally determined phase transition temperatures were compared with calculation results and good mutual agreement was noticed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号