首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optical absorption, thermoluminescence, infrared spectra and differential thermal analysis of three different tellurite glass systems viz., ZnF2-As2O3-TeO2, ZnF2-Bi2O3-TeO2 and ZnF2-P2O5-TeO2 containing 0.4% of Cr2O3, have been investigated. Results have been analysed in the light of different oxidation states of chromium ion and the most suitable host for lasing Cr3+ ions has been identified and reported.  相似文献   

2.
The compositional and thermal dependencies of phase and electrical behaviour of compositions in the system Bi14W1 − xLaxO24 − 3x/2 (0.00 < x < 1.00) have been studied by X-ray powder diffraction, differential thermal analysis and a.c. impedance spectroscopy. The system exhibits polymorphism and phase separation, which shows both compositional and thermal dependence. Compositions with x = 0.25 and x = 0.50 exhibit a single phase tetragonal structure at room temperature. In contrast, the x = 0.75 composition at room temperature shows a mixture of a cubic phase and a secondary β-Bi2O3 related tetragonal phase. A full solid solution is observed at high temperatures, corresponding to the occurrence of a δ-Bi2O3 type phase. The appearance of the various phases correlates well with the observed electrical behaviour. The x = 0.75 composition exhibits exceptionally high conductivity at high temperatures (σ800 = 1.34 S cm− 1), but also shows significant phase separation at lower temperatures.  相似文献   

3.
The Bi3SbO7 ceramic was prepared by the solid state reaction method and its phase evolution at different temperatures was studied. Low temperature phase α-Bi3SbO7 was formed at about 890 °C and it started to transform to high temperature phase β-Bi3SbO7 at about 960 °C. Microwave dielectric constants of α-Bi3SbO7 ceramic and β-Bi3SbO7 ceramic were 43.2 and 37.6, Qf value were 2080 and 5080 GHz, respectively. TCF of α-Bi3SbO7 ceramic was near zero and TCF of β-Bi3SbO7 ceramic was about −120 ppm/°C. The Bi3SbO7 ceramic is a promising candidate for low temperature co-fired ceramic (LTCC) technology due to its large dielectric constant, low dielectric loss at microwave region, low sintering temperature and simple composition.  相似文献   

4.
The ternary semiconducting compound Cu2GeSe3 has been investigated for optical properties with photoacoustic spectroscopy. Optical absorption spectra of Cu2GeSe3 is obtained in the range of 0.76-0.81 eV photon-energy at temperatures between 80 and 300 K. The thermal variation of band gap energy has been examined from the optical absorption spectra at different temperatures. The temperature induced band gap shrinkage has been explained on the basis of electron-phonon interaction. Varshni's empirical relation in conjunction with Vina and Passler model is taken into consideration for data fitting. The Debye temperature was calculated approximately as 240 K. The acoustic phonons with a characteristic temperature as 160 K corresponding to effective mean frequency have been attributed to the thermal variation of the energy gap.  相似文献   

5.
Electrical conductivity of ZrO2 doped with Pb3O4 has been measured at different temperatures for different molar ratios (x=0, 0.01, 0.02, 0.03, 0.04, 0.05 and 0.06). The conductivity increases due to migration of vacancies, created by doping. The conductivity increases with increase in temperature till 180 °C and thereby decreases due to collapse of the fluorite framework. A second rise in conductivity at higher temperatures beyond 500-618 °C is due to phase transition of ZrO2. DTA and X-ray powder diffraction were carried out for confirming doping effect and transition in ZrO2.The addition of Pb3O4 to ZrO2 shifted the phase transition of ZrO2 due to the interaction between Pb3O4 and ZrO2.  相似文献   

6.
A detailed study of magnetic properties of cobaltite YBaCo2O5.5 has been performed in high (up to 35 T) magnetic fields and under hydrostatic pressure up to 0.8 GPa. The temperatures of paramagnet-ferromagnet (PM-FM) and ferromagnet-antiferromagnet (FM-AF) phase transitions and their pressure derivatives have been determined. It has been revealed that in the compound with yttrium, in contrast to those with magnetic rare earth atoms, the AF-FM field-induced magnetic phase transition is accompanied by a considerable field hysteresis below 240 K, and the magnetic field of 35 T is not sufficient to complete this transition at low temperatures. The hysteresis value depends on the magnetic field sweep rate, which considered as an evidence of magnetic viscosity that is especially strong in the region of coexistence of the FM and AF phases. High values of susceptibility for the field-induced FM phase show that Co spin state in these compounds changes in strong magnetic field.  相似文献   

7.
Organic-inorganic composite SiO2-Al2O3 films have been prepared by sol-gel using methacryloxypropyl trimethoxysilane and aluminum sec-butoxide as the precursors. By introduction of organic groups into the inorganic backbone, the smooth and crack-free films could be readily achieved by a one-step dip-coating process, with the thickness up to 4.6 μm after being post-baked at 200 °C for 2 h. The films presented in an amorphous phase with an acceptable chemical homogeneity. Owing to the formation of chelate rings, the gel films showed a strong photosensitivity to ultraviolet light at 325 nm. The uniform fine patterns of SiO2-Al2O3 thick films could be well defined by ultraviolet light imprinting simply using a mask. These performances of SiO2-Al2O3 films indicate the potential for integrated optical systems.  相似文献   

8.
Nanocrystalline CuFe2O4 and CuFe2O4/xSnO2 nanocomposites (x=0, 1, 5 wt%) have been successfully synthesized by one-pot reaction of urea-nitrate combustion method. The transmission electron microscope study reveals that the particle size of the as synthesized CuFe2O4 and CuFe2O4/5 wt%SnO2 are 10 and 20 nm, respectively. The SnO2 coating on the nanocrystalline CuFe2O4 was confirmed from HRTEM studies. The resultant products were sintered at 1100 °C and characterized by XRD and SQUID for compound formation and magnetic studies, respectively. The X-ray diffraction pattern shows the well-defined sharp peak that confirms the phase pure compound formation of tetragonal CuFe2O4. The zero field cooled (ZFC) and field cooled (FC) magnetization was performed using SQUID magnetometer from 2 to 350 K and the magnetic hysteresis measurement was carried out to study the magnetic properties of nanocomposites.  相似文献   

9.
Spinel ferrite NiFe2O4 nanoparticles (?25 nm) in SiO2 matrix were prepared by sol–gel method. The phase and average crystallite size of the samples were determined by X-ray diffraction method and the particle size distributions were studied by a transmission electron microscope. Magnetic properties of the samples were investigated with different ferrite particle sizes and at various temperatures down to 10 K. Superparamagnetic properties were observed at room temperature when the particle size is less than 10 nm.In superparamagnetic state, the field dependence of magnetization follows Langevin function which was originally developed for paramagnetism. The effective anisotropy constant Keff is found to increase significantly with the decrease in particle volume and an order of magnitude higher than that of the bulk samples when the particle size is below 5 nm due to the dominance of surface anisotropy. In case of nanosized systems, the effect of size reduction on the law of approach to saturation has also been studied in detail.  相似文献   

10.
A laser-heated sample in a diamond anvil cell and synchrotron X-ray radiation was used to carry out structural characterization of the phase transformation of Fe2O3 at high pressures (30-96 GPa) and high temperature. The Rh2O3(II) (or orthorhombic perovskite) structure transforms to a new phase, which exhibits X-ray diffraction data that are indicative of a CaIrO3-type structure. The CaIrO3-type structure exhibited an orthorhombic symmetry (space group: Cmcm) that was stable at temperatures of 1200-2800 K and pressure of 96 GPa (the highest pressure used). Unambiguous assignment of such a structure requires experimental evidence for the presence of two Fe species. Based on the equation of state of gold, the phase boundary of the CaIrO3-type phase transformation was P (GPa)=59+0.0022×(T−1200) (K).  相似文献   

11.
La2O3 doped nanocrystalline zirconia (ZrO2) was prepared by chemical co-precipitation method for the 3, 5, 8, 10, 15, 20 and 30 mol.% concentrations of La2O3. Structural studies were performed using X-ray diffraction (XRD). All the as-synthesized samples were found to be in monoclinic phase. As-synthesized samples were given heat treatment at higher temperatures for tetragonal/cubic structural phase stabilization. Sintering the samples at temperature 1173 K stabilized the tetragonal and cubic phases. A slight shift in the 100% peak of the cubic phase was observed towards the low diffraction angle indicating the substitution of the bigger La3+ ion into the ZrO2 lattice. Grain sizes were found to lie between 10 and 13 nm. Electrical conductivity studies were performed on the cubic phase stabilized La2O3-ZrO2 by complex impedance spectroscopy. The conductivity increases up to the dopant concentration 10 mol.% and then decreases with further increase in La2O3 concentration. Initial increase in conductivity is correlated to the stabilization of the cubic phase and the subsequent decrease in the conductivity with the dopant content is interpreted on the basis of the oxygen-ion movement model. Electrical conductivity has contributions from grain and grain boundary regions. But the grain boundary conductivity is slightly higher than the corresponding grain conductivity. Higher grain boundary conductivity shows higher diffusion coefficient for the atoms on the surface of the ZrO2 grains. The possible mechanism of the oxygen ion conduction in the La2O3 stabilized zirconia (LSZ) is reported. The Barton, Nakajima and Namikawa (BNN) relation has been applied to the conductivity data and found that the d.c. and a.c. conductions have been correlated to each other by the same mechanism.  相似文献   

12.
Using (Bi2O3)0.75(Dy2O3)0.25 nano-powder synthesized by reverse titration co-precipitation method as raw material, dense ceramics were sintered by both Spark Plasma Sintering (SPS) and pressureless sintering. According to the predominance area diagram of Bi-O binary system, the sintering conditions under SPS were optimized. (Bi2O3)0.75(Dy2O3)0.25 ceramics with relative density higher than 95% and an average grain size of 20 nm were sintered in only 10 min up to 500 °C. During the pressureless sintering process, the grain growth behavior of (Bi2O3)0.75(Dy2O3)0.25 followed a parabolic trend, expressed as D2 − D02 = Kt, and the apparent activation energy of grain growth was found to be 284 kJ mol− 1. Dense (Bi2O3)0.75(Dy2O3)0.25 ceramics with different grain sizes were obtained, and the effect of grain size on ion conductivity was investigated by impedance spectroscopy. It was shown that the total ion conductivity was not affected by the grain size down to 100 nm, however lower conductivity was measured for the sample with the smallest grain size (20 nm). But, although only the δ phase was evidenced by X-ray diffraction for this sample, a closer inspection by Raman spectroscopy revealed traces of α-Bi2O3.  相似文献   

13.
Ni-ferrite (NiFe2O4) nanoparticles have been synthesized via a solid state reaction process. Ni and Fe bi-metallic nanoparticles in the form of Ni33Fe67 alloy nanopowder are first synthesized by simultaneous evaporation of the required amounts of pure Ni and Fe metals followed by rapid condensation of the evaporated metal flux into solid state by means of an inert gas, helium, using the process of inert gas condensation (IGC). In order to form the NiFe2O4 structure, as-synthesized samples (Ni33Fe67) are annealed for 12 h in ambient conditions at different annealing temperatures. Structural analyses show that NiFe2O4 starts to form at around 450 °C and gets progressively well defined with increasing annealing temperatures yielding particle with size ranging between 15 and 50 nm. Besides successfully forming NiFe2O4, NiO/Fe3O4 core/shell nanoparticles have also been synthesized by adjusting the annealing conditions. Three different structures, Ni33Fe67, NiO/Fe3O4, and NiFe2O4, obtained in this study are compared with respect to their structural and magnetic properties.  相似文献   

14.
Spherical-shaped Li4Ti5O12 anode powders with a mean size of 1.5 μm were prepared by spray pyrolysis. The precursor powders obtained by spray pyrolysis had no peaks of crystal structure of Li4Ti5O12. The powders post-treated at temperatures of 800 and 900 °C had the single phase of spinel Li4Ti5O12. The powders post-treated at a temperature of 1000 °C had main peaks of the Li4Ti5O12 phase and small impurity peaks of Li2Ti3O7. The spherical shape of the precursor powders was maintained after post-treatment at temperatures below 800 °C. The Brunauer-Emmett-Teller (BET) surface areas of the Li4Ti5O12 anode powders post-treated at temperatures of 700, 800 and 900 °C were 4.9, 1.6 and 1.5 m2/g, respectively. The initial discharge capacities of Li4Ti5O12 powders were changed from 108 to 175 mAh/g when the post-treatment temperatures were changed from 700 to 1000 °C. The maximum initial discharge capacity of the Li4Ti5O12 powders was obtained at a post-treatment temperature of 800 °C, which had good cycle properties below current densities of 0.7 C.  相似文献   

15.
Y2O3 thin films were grown on silicon (1 0 0) substrates by pulsed-laser deposition at different substrate temperatures and O2 pressures. The structure and composition of films are studied by using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Y2O3 thin films deposited in vacuum strongly oriented their [1 1 1] axis of the cubic structure and the film quality depended on the substrate temperature. The magnitude of O2 pressure obviously influences the film structure and quality. Due to the silicon diffusion and interface reaction during the deposition, yttrium silicate and SiO2 were formed. The strong relationship between composition and growth condition was discussed.  相似文献   

16.
Structure and electrical conductivity of Bi14WO24 as a function of temperature have been examined by X-ray and neutron powder diffraction, a.c. impedance spectroscopy and differential thermal analysis. The room temperature structure was successfully refined using a monoclinic subcell model in space group I2/m. However, additional reflections in the neutron data are consistent with a large supercell of dimensions a = 17.3780(1) Å, b = 17.3891(1) Å, c = 26.1785(2) Å and β = 90.270(1)°, as previously proposed. Transitions to tetragonal and cubic phases are observed at ca. 35 °C and 780 °C, respectively. The structure of the high temperature polymorph is confirmed as a fully disordered δ-Bi2O3 type phase. Analysis of the defect structure is consistent with a predominantly tetrahedral environment for tungsten, as seen at low temperatures. The conductivity behaviour is correlated with the appearance of the δ-phase at high temperatures and exhibits a value of 0.97 S cm− 1 at 800 °C.  相似文献   

17.
The SnO2-Bi2O3 based thick-film polycrystalline material is fabricated on alumina substrate via screen-printing technique. This material system is evaluated at various temperatures (35 °C≤T≤100 °C) using ac small-signal (immittance) measurements in the frequency range 10 Hz≤f≤106 Hz. The simplistic analytical scenario for the immittance data employed the Cole-Cole empirical equation in conjunction with the estimation of the inspected input parameters. This is an alternate approach compared to the complex nonlinear least squares (CNLS) fitting procedure, and purely based on the appearance of the semicircular relaxation in the complex plane. It is found that the constituting components of the semicircular relaxation in the impedance plane are thermally activated indicating complexity in the grain boundary contributions despite the Debye and non-Debye relaxation responses. The possible degree of uniformity or non-uniformity in the grain boundary activity associated with its capacitance term observed via the Debye or non-Debye semicircular relaxation in the impedance (Z?) plane has been postulated.  相似文献   

18.
The solid solution behavior of the Ni(Fe1−nCrn)2O4 spinel binary is investigated in the temperature range 400-1200 °C. Non-ideal solution behavior, as exhibited by non-linear changes in lattice parameter with changes in n, is observed in a series of single-phase solids air-cooled from 1200 °C. Air-annealing for 1 year at 600 °C resulted in partial phase separation in a spinel binary having n=0.5. Spinel crystals grown from NiO, Fe2O3 and Cr2O3 reactants, mixed to give NiCrFeO4, by Ostwald ripening in a molten salt solvent, exhibited single-phase stability down to about 750 °C (the estimated consolute solution temperature, Tcs). A solvus exists below Tcs. The solvus becomes increasingly asymmetric at lower temperatures and extrapolates to n values of 0.2 and 0.7 at 300 °C. The extrapolated solvus is shown to be consistent with that predicted using a primitive regular solution model in which free energies of mixing are determined entirely from changes in configurational entropy at room temperature.  相似文献   

19.
Highly textured chromium dioxide (CrO2) films have been deposited on Al2O3 single-crystal substrates by atmospheric pressure chemical vapor deposition method (CVD). X-ray diffraction patterns show that the CrO2 films are (1 0 0)-oriented on Al2O3 (0 0 1) substrates, and are (1 0 1)-oriented on Al2O3 (0 1 2) substrates. Scanning electron microscopy images indicate that the (1 0 0)-oriented CrO2 films grown on Al2O3 (0 0 1) substrates have smoother surface and better qualities than that grown on Al2O3 (0 1 2) substrate. At room temperature, the magnetoresistance of the (1 0 0)- and (1 0 1)-oriented CrO2 films are nearly same, and both show a linear dependence on applied magnetic field. While at 80 K, the (1 0 1)-oriented CrO2 films show a much larger magnetoresistance compared with the (1 0 0)-oriented CrO2 films. The reasons are briefly discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号