首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
20LiF-(30−x)Sb2O3-50B2O3:xNiO glasses with the value of x (ranging from 0 to 1.0 mol% in steps of 0.2) were prepared. A number of studies, viz. differential scanning calorimetry, optical absorption, magnetic susceptibility and thermoluminescence, on these glasses were carried out as a function of nickel ion concentration. An anomaly has been observed in all the properties of these glasses when NiO concentration is about 0.6 mol%. The results of these studies were analysed in the light of different environments of nickel ions in the glass network.  相似文献   

2.
Dielectric properties, viz. dielectric constant ε′, loss tan δ and a.c conductivity σac (over a wide range of frequency and temperature) and dielectric breakdown strength of PbO-Sb2O3-As2O3 glasses doped with V2O5 (ranging from 0 to 0.5 mol%) are studied. Analysis of these results, based on optical absorption and ESR spectra, indicates that the insulating strength of the glasses is comparatively high when the concentration of V2O5 is about 0.3 mol% in the glass matrix.  相似文献   

3.
BaO-Al2O3-P2O5 glasses containing different concentrations of NiO (ranging from 0 to 1.0 mol%) were prepared. A number of studies viz., chemical durability, differential thermal analysis, spectroscopic (infrared, optical absorption spectra), magnetic susceptibility and dielectric properties (constant ε′, loss tan δ, AC conductivity σAC over a range of frequency and temperature) of these glasses have been carried out. The studies on chemical durability indicate that there is a significant increase in the corrosion resistance of the glasses; where as the results of differential thermal analysis suggests that there is a substantial improvement in the glass forming ability, with increase in the concentration of NiO up to 0.6 mol% in the glass matrix. The optical absorption, magnetic susceptibility and IR spectral studies point out nickel ions occupy both tetrahedral and octahedral positions in the glass network; the later positions seems to be dominant when the concentration of NiO is beyond 0.6 mol% in the glass matrix. The studies of dielectric properties reveal that the presence of nickel oxide in the glass network causes a considerable improvement in the insulating strength of the se glasses when the concentration of NiO?0.6 mol%.  相似文献   

4.
The glasses of the composition (40−x) PbO-15Bi2O3-45As2O3-xCoO, with 0≤x≤0.6 mol% in the steps of 0.1 were synthesized. The dielectric properties viz., dielectric constant, loss and ac conductivity over moderately larger ranges of frequency and temperature were investigated. The results were analyzed with the aid of the data on optical absorption and IR spectra. The analysis indicated that there is an increase in the insulating strength of the glasses with increase in the concentration of CoO up to 0.4 mol%.  相似文献   

5.
ZnO-Sb2O3-B2O3 glasses containing different concentrations of MnO ranging from 0 to 1.0 mol% were prepared. A number of studies, viz. optical absorption, infrared and ESR spectra and magnetic susceptibility, were carried out as a function of manganese ion concentration. The analysis of the results indicate that manganese ions mostly exist in Mn2+ state in these glasses when the concentration of MnO≤0.6 mol% and above this concentration, these ions seem to exist in Mn3+ state in the glass network.  相似文献   

6.
PbO-Sb2O3 glasses added with different concentrations of As2O3 (10-55 mol%) were prepared to understand their IR spectra, elastic properties (Young's modulus E, Shear modulus G, microhardness H), optical absorption and dielectric properties (constant ε, loss tan δ, ac conductivity σac over a moderately wide range of frequency and temperature and breakdown strength in air medium at room temperature). Results have indicated that the structure of the PbO-Sb2O3-As2O3 glass is more rigid when the concentration of As2O3 is around 40 mol%.  相似文献   

7.
ZnO-ZnF2-B2O3 glasses containing small concentrations of TiO2 ranging from 0 to 0.6 mol% were prepared. Dielectric properties (constant ε′, loss tan δ, ac conductivity σac over a moderately wide range of frequency and temperature at room temperature in air medium) of these glasses have been studied. The results of these studies were analyzed with the aid of data on optical absorption, ESR and IR spectra of these glasses. The analysis suggests that when the concentration of TiO2>0.2 mol%, the titanium ions, in addition to Ti4+ state, co-exist in Ti3+ state, act as modifiers and reduce the breakdown strength.  相似文献   

8.
Ho3Fe5O12 ceramics with garnet structure were prepared by the solid-state reaction method. The results revealed the existence of Fe2+ ions have intensive influence on dielectric and magnetic properties of Ho3Fe5O12 ceramics, which could be further confirmed by oxygen treatment. With a magnetic field lower than 10 kOe, the ME coefficient reaches 33 ps m−1 at room temperature. And the ME coupling was further verified by dielectric anomaly near Néel temperature.  相似文献   

9.
The electrical properties of the solid electrolytes Ag7I4VO4-Al2O3 (0-40 mol% Al2O3) are investigated. The electrical conductivity, dielectric constant and dielectric loss are increased by increasing the concentration of Al2O3; showing a maximum at 30 mol% Al2O3. The conductivity is found to be increased by decreasing the particle size of Al2O3. The results are explained using the random resistor network model (RRN). This is due to the formation of a highly conducting interface layer along the matrix-particle interface. This layer is destroyed at concentrations higher than 30 mol% Al2O3.  相似文献   

10.
Room temperature electron paramagnetic resonance (EPR) spectra and temperature dependent magnetic susceptibility data have been obtained on bulk x(ZnO,Fe2O3)(65−x)SiO220(CaO, P2O5)15Na2O (6≤x≤21 mole%) glasses prepared by melt quenching method. EPR spectra of the glasses revealed absorptions centered at g≈2.1 and 4.3. The variations of the intensity and line width of these absorption lines with composition have been interpreted in terms of the variation in the concentration of the Fe2+ and Fe3+ ions in the glass and the interaction between the iron ions. EPR and magnetic susceptibility data of the glasses reveal that both Fe2+ and Fe3+ ions are present in the glasses, with their relative concentration being dependent on the glass composition. The studies reveal superexchange type interactions in these glasses, which are strongly dependent on their iron content.  相似文献   

11.
Glass formation has been investigated in the Sb2O3-ZnBr2 binary system. Vitreous samples have been obtained for batches containing 20-90 mol% Sb2O3. Chemical analysis shows that bromine concentration is smaller than expected and real compositions belong to the Sb2O3-ZnBr2-ZnO ternary system. However, the discrepancy between nominal and analyzed compositions is fair for Sb2O3 content larger than 50 mol%. Optical transmission lies between 400 nm and 7 μm and refractive index ranges from 2.0 to 2.1. Glass transition occurs around 300 °C, and crystallization exotherm does not appear in the differential scanning calorimetry scan at 10 K s−1 for samples containing 50-60 mol% Sb2O3. Thermal expansion varies between 120 and 220×10−7 K−1 as antimony content decreases. Microhardness is close to 200 kg/mm2. These glasses have low phonon energy and make potential materials for infrared transmission and active fibers.  相似文献   

12.
New germanosilicate glasses giving the crystallization of yttrium iron garnet Y3Fe5O12 (YIG) and Bi-doped YIG, 23Na2O-xBi2O3-(12−x)Y2O3-25Fe2O3-20SiO2-20GeO2 (mol%), are developed, and the laser-induced crystallization technique is applied to the glasses to pattern YIG and Bi-doped YIG crystals on the glass surface. It is clarified from the Mössbauer effect measurements that iron ions in the glasses are present mainly as Fe3+. It is suggested from the X-ray diffraction analyses and magnetization measurements that Si4+ ions are incorporated into YIG crystals formed in the crystallization of glasses. The irradiations (laser power: 32-60 mW and laser scanning speed: 7 μm/s) of continuous wave Yb:YVO4 fiber laser (wavelength: 1080 nm) are found to induce YIG and Bi-doped YIG crystals, indicating that Fe3+ ions in the glasses act as suitable transition metal ions for the laser-induced crystallization. It is suggested that YIG and Bi-doped YIG crystals in the laser irradiated part might orient. The present study will be a first step for the patterning of magnetic crystals containing iron ions in glasses.  相似文献   

13.
In this study, the principal role of Al2O3 on the features of the photoluminescence spectra of Tm3+ ion and upconversion phenomenon in Tm3+ and Er3+ codoped CaF2−Al2O3−P2O5−SiO2 glass system has been investigated. The concentration of Al2O3 is varied from 2 to 10 mol% while that of Er3+ and Tm3+ is fixed. IR and Raman spectral studies have indicated that there is a gradual increase in the degree of disorder in the glass network with increase in the concentration of Al2O3 up to 6.0 mol%. This is attributed to the presence of Al3+ ions in octahedral positions in larger proportions. When the glasses are doped with Tm3+ ions, the blue and red emissions were observed, whereas in Er3+ doped glasses blue, green and red emissions were observed. When the glasses are codoped with Tm3+ and Er3+ ions and excited at 790 nm, all the three emission lines were observed to be reinforced, especially in the glasses mixed with 6.0 mol% of Al2O3. The IR emission band detected at about 1.8 μm due to 3F43H6 transition of Tm3+ ions is also observed to be strengthened due to codoping. The reasons for enhancement in the intensity of various emission bands due to codoping have been identified and discussed with the help of rate equations for various emission transitions.  相似文献   

14.
LiF-MoO3-P2O5 glasses mixed with different concentrations of Ag2O (ranging from 0 to 1.0 mol%) was prepared. D.C. conductivity and dielectric properties over a range of temperature have been investigated. The analysis of the results of d.c. conductivity has indicated that T>θD/2, the small polaron hoping model seems to be fit and the conduction is adiabatic in nature. These results further indicated that there is a change over of conduction mechanism from electronic to ionic at about 0.4 mol% of Ag2O. The low temperature part of a.c. conductivity is explained based on quantum mechanical tunneling model. The quantitative analysis of these results is further extended with the aid of the data on optical absorption, ESR and IR spectral studies.  相似文献   

15.
Magnetoelectric (ME) nanocomposites containing Ni0.75Co0.25Fe2O4-BiFeO3 phases were prepared by citrate sol-gel process. X-ray diffraction (XRD) analysis showed phase formation of xNi0.75Co0.25Fe2O4-(1−x)BiFeO3 (x=0.1, 0.2, 0.3 and 0.4) composites on heating at 700 °C. Transmission electron microscopy revealed the formation of powders of nano order size and the crystal size was found to vary from 30 to 85 nm. Dispersion in dielectric constant (ε) and dielectric loss (tan δ) in the low-frequency range have been observed. It is seen that nanocomposites exhibit strong magnetic properties and a large ME effect. On increasing Ni0.75Co0.25Fe2O4 contents in the nanocomposites, the saturation magnetization (MS) and coercivity (HC) increased after annealing at 700 °C. The large ME output in the nanocomposites exhibits strong dependence on magnetic bias and magnetic field frequency. The large value of ME output can be attributed to small grain size of ferrite phase of nanocomposite being prepared by citrate precursor process.  相似文献   

16.
Li2O-CaF2-P2O5 glasses mixed with different concentrations of Cr2O3 (ranging from 0 to 1.0 mol%) were crystallized. The samples were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy (EDS), differential thermal analysis and conventional spectroscopic techniques. The X-ray diffraction and scanning electron microscopic studies reveal the presence of lithium phosphate, calcium phosphate and chromium phosphate (complexes of Cr3+, Cr5+ and Cr6+ ions) crystal phases. The study on DTA suggests that the crystallization is predominantly due to the surface crystallization when the concentration of nucleating agent Cr2O3 is around 0.8 mol%. The IR and Raman spectral studies of these samples indicate that the sample crystallized with 0.8 mol% Cr2O3 is more compact and possesses high rigidity due to the presence of chromium ions largely in tetrahedral positions.  相似文献   

17.
Magnetic properties of Li2O–MnO2–CaO–P2O5–SiO2 (LMCPS) glasses doped with various amounts of Fe2O3 were investigated. There is a dramatic change in the magnetic property of pristine LMCPS after the addition of Fe2O3 and crystallized at 850 °C for 4 h. Both the electron paramagnetic resonance and magnetic susceptibility measurements showed that the glass ceramic with 4 at% Fe2O3 exhibited the coexistence of superparamagnetism and ferromagnetism at room temperature. When the Fe2O3 content was higher than 8 at%, the LMCPS glasses showed ferromagnetism behavior. The complex magnetic behavior is due to the distribution of (Li, Mn)ferrite particle sizes driven by the Fe2O3 content. The thermal induced hysteresis loss of the crystallized LMCPS glass ceramics was characterized under an alternating magnetic field. The energy dissipations of the crystallized LMCPS glass ceramics were determined by the concentration and Mn/Fe ratios of Li(Mn, Fe)ferrite phase formed in the glass ceramics.  相似文献   

18.
Glasses with composition x(ZnO,Fe2O3)(65 − x)SiO220(CaO,P2O5)15Na2O (6 ≤ x ≤ 21 mol%) were prepared by melt-quenching technique. Bioactivity of the glasses was investigated in vitro by examining apatite formation on the surface of glasses treated in acellular simulated body fluid (SBF) with ion concentrations nearly equal to those in human blood plasma. Formation of bioactive apatite layer on the samples treated in SBF was confirmed by using Fourier transform infrared reflection (FTIR) spectroscopy, grazing incidence X-ray diffraction (GI-XRD) and scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometer. Development of an apatite structure on the surface of the SBF treated glass samples as functions of composition and time could be established using the GI-XRD data. FTIR spectra of the glasses treated in SBF show features at characteristic vibration frequencies of apatite after 1-day of immersion in SBF. SEM observations revealed that the spherical particles formed on the glass surface were made of calcium and phosphorus with the Ca/P molar ratio being close to 1.67, corresponding to the value in crystalline apatite. Increase in bioactivity with increasing zinc-iron oxide content was observed. The results have been used to understand the evolution of the apatite surface layer as a function of glass composition and immersion time in SBF.  相似文献   

19.
Li2O-CaF2-P2O5 glasses mixed with different concentrations of TiO2 (ranging from 0 to 0.8 mol%) were crystallized at 500 °C. The photo luminescence spectra of these samples excited with the wavelengths corresponding to their absorption edges have been recorded at room temperature. The spectra exhibited an emission band in the wavelength region 470-500 nm. The emission band is identified due to the charge transfer from O2− ion in to empty 3d orbital of octahedrally positioned Ti4+ ions. The analysis of the results further indicates the highest luminescence efficiency for the glass ceramic sample crystallized with 0.6 mol% of TiO2.  相似文献   

20.
PbO-PbF2-B2O3 glasses containing different concentrations of FeO have been prepared. The glasses are characterized by X-ray diffraction and differential thermal analysis. The dielectric properties viz., dielectric constant, loss, conductivity, over a moderately wide range of frequency and temperature and dielectric breakdown strength have been investigated. The results of these studies have been analyzed in the light of different oxidation states of iron with the aid of the data on IR, ESR, optical absorption and magnetic susceptibility measurements. The analysis shows that iron ions exist mainly in Fe3+ state, occupy tetrahedral positions and increase the insulating strength of the glass if FeO is present in smaller concentrations. However, if FeO is present in higher concentrations in the glass matrix, (i) the dielectric relaxation intensity has been observed to increase, (ii) the intensity and the half width of the ESR signal has been observed to decrease and (iii) the value of magnetic moment (evaluated from magnetic susceptibility) has been observed to drop to a value of 4.6 μB from 5.7 μB. From these results it has been concluded that in this concentration range, iron ions exist mainly in divalent state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号