首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Planar quarter wave stacks based on amorphous chalcogenide Ge-Se alternating with polymer polystyrene (PS) thin films are reported as Bragg reflectors for near-infrared region. Chalcogenide films were prepared using a thermal evaporation (TE) while polymer films were deposited using a spin-coating technique. The film thicknesses, d∼165 nm for Ge25Se75 (n=2.35) and d∼250 nm for polymer film (n=1.53), were calculated to center the reflection band round 1550 nm, whose wavelengths are used in telecommunication. Optical properties of prepared multilayer stacks were determined in the range 400-2200 nm using spectral ellipsometry, optical transmission and reflection measurements. Total reflection for normal incidence of unpolarized light was observed from 1530 to 1740 nm for 8 Ge-Se+7 PS thin film stacks prepared on silicon wafer. In addition to total reflection of light with normal incidence, the omnidirectional total reflection of TE-polarized light from 8 Ge-Se+7 PS thin film stacks was observed. Reflection band maxima shifted with varying incident angles, i.e., 1420-1680 nm for 45° deflection from the normal and 1300-1630 nm for 70° deflection from the normal.  相似文献   

2.
The excitation of terahertz surface plasma wave (SPW) over bismuth thin film-glass structure by a parallel propagating electron beam is studied. The SPW phase velocity is sensitive to the thickness of bismuth film and it is driven via the Cerenkov resonance. The growth rate for terahertz radiation generation by an electron beam is obtained under small signal approximation.  相似文献   

3.
Most of the applications of electrochromic devices (ECDs) concern the visible whereas there is a significant need for ECDs active in the infrared (IR) region. After optimization, WO3 thin films show significant variation in emissivity, as high as 78% and 49% in the MW (3-5 μm) band and LW (8-12 μm) band, respectively. The incorporation of the EC WO3 layer in ECDs is discussed in terms (i) of device configuration (i.e. position of the active layer on top or bottom of the device), (ii) of the choice of materials including the transparent conductive layer, electrolyte, counter electrode, and (iii) of the thickness of each layer. Initial trends in optical modulation of the ECDs are deduced from simulation of the optical indexes (n and k). Experimental data based on half-cell assembly confirm the modulation in emissivity in the IR region for WO3/Ta2O5/NiO-based devices with however lower values than the predicted ones.  相似文献   

4.
Ternary thin films of cerium titanium zirconium mixed oxide were prepared by the sol-gel process and deposited by a spin coating technique at different spin speeds (1000-4000 rpm). Ceric ammonium nitrate, Ce(NO3)6(NH4)2, titanium butoxide, Ti[O(CH2)3CH3]4, and zirconium propoxide, Zr(OCH2CH2CH3)4, were used as starting materials. Differential calorimetric analysis (DSC) and thermogravimetric analysis (TGA) were carried out on the CeO2-TiO2-ZrO2 gel to study the decomposition and phase transition of the gel. For molecular, structural, elemental, and morphological characterization of the films, Fourier Transform Infrared (FTIR) spectral analysis, X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), cross-sectional scanning electron microscopy (SEM), and atomic force microscopy (AFM) were carried out. All the ternary oxide thin films were amorphous. The optical constants (refractive index, extinction coefficient, band gap) and thickness of the films were determined in the 350-1000 nm wavelength range by using an nkd spectrophotometer. The refractive index, extinction coefficient, and thickness of the films were changed by varying the spin speed. The oscillator and dispersion energies were obtained using the Wemple-DiDomenico dispersion relationship. The optical band gap is independent of the spin speed and has a value of about Eg≈2.82±0.04 eV for indirect transition.  相似文献   

5.
The optical and photoluminescent properties of plasma polymer layers synthesized from hexamethyldisiloxane are examined. The value of the polymer layer transparence is in the limits from 55% at 400 nm to 88% at 800 nm. Photoluminescence is stimulated by using the spectral line λ=365 nm emitted by a Hg spectral lamp.The organosilicon plasma polymers are included as protective and capsulating layers in electroluminescent (EL) structures. The structure obtained is characterized by a significant increase in emission brightness, compared to inorganic protective layers. For EL structures with a chalcogenide protective layer the increase is more than 6 times and for structures with heterogeneous matrix on the base of TiO2 it is more than 20 times. As a stable covering the organosilicon plasma polymer increases the lifetime of the EL structures too.  相似文献   

6.
White polymer light-emitting diodes (WPLEDs) were fabricated with blue phosphorescent iridium bis(2-(4,6-difluorophenyl)-pyridinato-N,C2′) picolinate (FIrpic) and red fluorescent silole and carbazole copolymer PCz-MPTST within a poly(N-vinylcarbazole) (PVK): 1,3-bis[(4-tert-butylphenyl)-1,3,4- oxadiazolyl] phenylene (OXD-7) host matrix. Efficient white emission consisting two emission peaks was achieved with luminous efficiency of 9.2 cd/A and CIE coordinates of (0.37, 0.40). By means of transient photoluminescence response, energy transfer among the blending components was investigated and discussed.  相似文献   

7.
Titanium nitride films of a thickness of ∼1.5 μm were deposited on amorphous and crystalline substrates by DC reactive magnetron sputtering at ambient temperature with 100% nitrogen in the sputter gas. The growth of nanostructured, i.e. crystalline nano-grain sized, films at ambient temperature is demonstrated. The microstructure of the films grown on crystalline substrates reveals a larger grain size/crystallite size than that of the films deposited on amorphous substrates. Specular reflectance measurements on films deposited on different substrates indicate that the position of the Ti-N 2s band at 2.33 eV is substrate-dependent, indicating substrate-mediated stoichiometry. This clearly demonstrates that not only structure and microstructure, but also chemical composition of the films is substrate-influenced. The films deposited on amorphous substrates display lower hardness and modulus values than the films deposited on crystalline substrates, with the highest value of hardness being 19 GPa on a lanthanum aluminate substrate.  相似文献   

8.
We report NiO nanowall thin films prepared by a facile hydrothermal synthesis method and their electrochromic application. The as-prepared porous nanowall NiO thin films show a highly porous structure built up by many interconnected nanoflakes with a thickness of about 30 nm. The electrochromic performances of the NiO films are characterized by means of UV–vis spectroscopy and cyclic voltammetry (CV) measurements. The effect of the annealing temperature on electrochromic properties is discussed. The NiO nanowall film annealed at 300 °C exhibits much better electrochromic performance than those counterparts annealed at higher temperature. The film annealed at 300 °C exhibits a noticeable electrochromism with reversible color changes from transparent to brown dark and presents a transmittance variation with 77% at 550 nm. The NiO nanowall film also shows good reaction kinetics with fast switching speed, and the coloration and bleaching times are 3 s and 4 s, respectively. The improved electrochromic performances are due to the porous morphological characteristics with fast ion and electron transfer resulting in fast reaction kinetics and high color contrast.  相似文献   

9.
Nanostructured europium-doped yttrium oxide thin films with lithium as a co-dopant were prepared using pulsed laser ablation technique. X-ray diffraction studies of the films indicated amorphous nature of the as deposited films and a transformation to crystalline phase with increase of annealing temperature. In this transformation, lithium co-doped films showed early crystallization. Lithium substitution resulted not only in enhancement of photoluminescence at 612 nm, resulting from 5D0-7F2 transition within europium, but also found to reduce the required processing temperature for intense photoemission. The deviation observed in the value of lattice constant of films annealed at different temperatures is found to be sensitive to annealing temperature. In the light of this, the dependence of photoluminescence intensity on the magnitude of lattice imperfection is also discussed. The morphology and transmittance of the films are also found to be sensitive to annealing process and lithium doping.  相似文献   

10.
Preparation of Cu2ZnSnS4 thin films by hybrid sputtering   总被引:2,自引:0,他引:2  
In order to fabricate Cu2ZnSnS4 thin films, hybrid sputtering system with two sputter sources and two effusion cells is used. The Cu2ZnSnS4 films are fabricated by the sequential deposition of metal elements and annealing in S flux, varying the substrate temperature. The Cu2ZnSnS4 films with stoichiometric composition are obtained at the substrate temperature up to 400 °C, whereas the film composition becomes quite Zn-pool at the substrate temperature above 450 °C. The Cu2ZnSnS4 film shows p-type conductivity, and the optical absorption coefficient and the band gap of the Cu2ZnSnS4 film prepared in this experiment are suitable for fabricating a thin film solar cell.  相似文献   

11.
The influence of mesoporous environment on the conjugated polymers was studied by UV-Vis absorption and Photoluminescence spectroscopy. The applied polymers were three novel poly(p-phenylenevinylene) derivatives (DDMA-PPV). These polymers have dibenzothiophen-5,5-dioxide units in their backbones, but are different from each other in the length of alkoxy side-chains. The polymers were incorporated into the mesoporous channels of SBA-15 by sorption from their dilute solutions. The confined polymers exhibited different trends in the shifts of the absorption onsets and the emission peaks depending on the length of the side-chains. The polymer with shorter side-chain showed red-shifts in both the absorption and emission spectra, whereas the polymer with longer side-chain showed blue-shifts. These phenomena were caused by the combined influences from the electronic confinement and the conformation distortion. Moreover, these trends were enhanced when the polymers were loaded in amine-modified SBA-15.  相似文献   

12.
This paper presents results of the studies on ionic conductivity and transference number measurements on potassium chlorate (KClO3) complexed polyvinyl chloride (PVC) films prepared by solution-cast technique. Temperature dependence of ionic conductivity and transference number data indicated the dominance of ion-type charge transport in these specimens. The magnitude of conductivity increased with increase in the concentration of the salt and temperature. Using this (PVC+KClO3) electrolyte, solid-state electrochemical cells were fabricated and their discharge profiles were studied under a constant load of 100 kΩ. Several cell profiles associated with these cells were evaluated and are reported.  相似文献   

13.
Semiconducting molecular materials based on aluminum phthalocyanine chloride (AlPcCl) and bidentate amines have been successfully used to prepare thin films by using a thermal evaporation technique. The morphology of the deposited films was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Studies of the optical properties were carried out on films deposited onto quartz and (1 0 0) monocrystalline silicon wafers and films annealed after deposition. The absorption spectra recorded in the UV–vis region for the as-deposited and annealed samples showed two absorption bands, namely the Q- and B-bands. In addition, an energy doublet in the absorption spectra of the monoclinic form at 1.81 and 1.99 eV was observed. A band-model theory was employed in order to determine the optical parameters. The fundamental energy gap (direct transitions) was determined to be within the 2.47–2.59 and 2.24–2.44 eV ranges, respectively, for the as-deposited and annealed thin films.  相似文献   

14.
This communication reports the spectroscopic characterizations of mixed Langmuir-Blodgett (LB) films of non-amphiphilic N,N-bis (2,5-di-tert-butylphenyl)- 3,4,9-perylenedicarboximide (DBPI) molecules, mixed with polymethyl methacrylate (PMMA) and stearic acid (SA). J- aggregates of DBPI molecules in the mixed LB films have been confirmed by UV-Vis absorption spectroscopic study. Formation of organized structure of molecular stacking in the mixed LB films gives rise to the strong excimeric emission, which is manifested by a broad structureless band in the longer wavelength region of the fluorescence spectra and is confirmed by excitation spectroscopic study. A weak hump at around 576 nm due to monomeric emission is observed in the fluorescence spectra of 0.1 M of DBPI-PMMA mixed LB films of lower number of layers. The intensity of the 0-0 band at 530 nm in the fluorescence spectra is observed to be a function of the molefraction, number of layers, surface pressure of lifting and the matrix materials.  相似文献   

15.
Optical absorption at room temperature and electrical conductivity at temperatures between 283 and 333 K of vacuum evaporated GexFexSe100−2x (0≤x≤15) amorphous thin films have been studied as a function of composition and film thickness. It was found that the optical absorption is due to indirect transition and the energy gap increases with increasing both Ge and Fe content; on the other hand, the width of the band tail exhibits the opposite behavior. The optical band gap Eopt was found to be almost thickness independent. The electrical conductivity show two types of conduction, at higher temperature the conduction is due to extended states, while the conduction at low temperature is due to variable range hopping in the localized states near Fermi level. Increasing Ge and Fe contents were found to decrease the localized state density N(EF), electrical conductivity and increase the activation energy for conduction, which is nearly thickness independent. Variation of the atomic densities ρ, molar volume V, glass transition temperature Tg cohesive energy C.E and number of constraints NCo with average coordination number Z was investigated. The relationship between the optical gap and chemical composition is discussed in terms of the cohesive energy C.E, average heat of atomization and coordination numbers.  相似文献   

16.
Fabrication and characterization of C60/tetrathiafulvalene solar cells was carried out. Photovoltaic properties of bulk-hetero and heterojunciotn solar cells were investigated by light-induced current vs. voltage curves and optical absorption. Transmission electron microscopy (TEM) image, X-ray and electron diffraction showed that the bulk-heterojunction film had the microstructure of C60 crystal structure with TTF phase. Heat treatment of the heterojunction film with tetraethylsilane improved the photovoltaic performance, yielding a slight increase of conversion efficiency. This result would be originated in improvement of microstructure around inner interface between the both crystal phases. Mechanisms of the photovoltaic properties were discussed on the basis of the experimental results.  相似文献   

17.
In this paper we report the reaction kinetics of nanodimensional clay saponite and hectorite with an amphiphilic cation octadecyl rhodamine B (RhB) in hybrid Langmuir monolayer at the air-aqueous clay dispersion interface. The surface pressure-molecular area (π-A) isotherms were strongly influenced by the presence of clay and the lift-off area of the cationic amphiphile shifted to progressively larger area. In-situ fluorescence imaging microscopic (FIM) studies showed the formation of micro-order domains in the organo-clay hybrid monolayer films at the air-clay dispersion interface. In-situ infrared reflection-absorption spectroscopy (IRRAS) was used to demonstrate the reaction kinetics. The time taken to complete the reaction kinetics for RhB-hectorite hybrid films is larger than for RhB-saponite hybrid films. Atomic force microscopic images of hybrid Langmuir-Blodgett films gave compelling visual evidence of the incorporation of clay platelets into the hybrid films, whose density increased with the progress of reaction kinetics.  相似文献   

18.
The need of efficient (fast and low consumption) optoelectronic devices has always been the driving force behind the investigation of materials with new or improved properties. To be commercially attractive, however, these materials should be compatible with our current micro-electronics industry and/or telecommunications system. Silicon-based compounds, with their matured processing technology and natural abundance, partially comply with such requirements—as long as they emit light. Motivated by these issues, this work reports on the optical properties of amorphous Si films doped with Fe. The films were prepared by sputtering a Si +Fe target and were investigated by different spectroscopic techniques. According to the experimental results, both the Fe concentration and the thermal annealing of the samples induce changes in their atomic structure and optical-electronic properties. In fact, after thermal annealing at ∼750 °C, the samples partially crystallize with the development of Si and/or β- FeSi2 crystallites. In such a case, certain samples present light emission at ∼1500 nm that depends on the presence of β- FeSi2 crystallites and is very sensitive to the annealing conditions. The most likely reasons for the light emission (or absence of it) in the considered Fe-doped Si samples are presented and discussed in view of their main structural-electronic characteristics.  相似文献   

19.
This study has investigated the optical and structural properties of reactively sputtered copper oxide. The investigated Cu to O ratio (oxygen content) spans the metal-insulator transition. Initially, the number of copper crystallites reduces and Cu2O crystallite numbers increase with increasing oxygen content, this then turns to a crystallite evolution of Cu2O to CuO as the oxygen content is increased above the nominal value for Cu2O, with no copper crystallites remaining. Along with the change in the structure, the system smoothly evolves from optically being metallic in nature to being band gap like, with increasing oxygen content.  相似文献   

20.
Adsorption behavior of gaseous molecules such as water vapor, nitrogen, and hydrogen within the interlayer of the hybrid compound composed of cationic polufluorinated surfactant, heptafluorobutanoylaminoethylhexadecyldimethylammonium bromide (C3F-S), and cation exchangeable clay, saponite, was studied by means of quartz crystal microbalance (QCM). The amount of adsorption of the gaseous molecules proportionally increased with the increase of the intercalated amount of C3F-S within the inorganic/organic hybrid compound. When the hybrid compound was dried before the gaseous adsorption, the dynamic response of the adsorption was very fast within 1 s, while it required a long time for ca. 10 h to plateau to a saturation level after an initial rapid increase followed by a slow decay of the QCM signal for the wet sample containing water (0.3 mmol/g-saponite). The dried hybrid compound, having C3F-S in the amount 4.3 equiv. against cation exchange capacity, adsorbed nitrogen (0.03 mmol/g-saponite), hydrogen (0.1 mmol/g-saponite), oxygen (0.03 mmol/g-saponite), ethylene (0.19 mmol/g-saponite) at 298 K, 101 kPa, respectively. The wet sample exhibited the gaseous adsorption with the larger amount: nitrogen (0.068 mmol/g-saponite), hydrogen (0.4 mmol/g-saponite), oxygen (0.067 mmol/g-saponite), and ethylene (0.24 mmol/g-saponite), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号