首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
45S5 Bioglasses of the composition 46.1 SiO2–2.6 P2O5–26.9 CaO–(24.4 ? x) Na2O–xMe2O (Me = Li or K) have been investigated using MAS NMR and MQ–MAS NMR methods. The analysis of the 29Si MAS NMR spectrum revealed two lineshapes whose chemical shift is consistent with two silica Qn=2,3 species. The 31P MAS NMR spectrum reveals the effect of both Na and Ca ions. The chemical shift of the observed 31P signal is intermediate between those of Na3PO4 (near 10 ppm) and Ca3(PO4)2 (near 3–0 ppm) species. The 23Na MAS NMR spectra were observed in the alkali oxide composition: 24.4 Na2O, 12.2 Na2O–12.2 K2O and 12.2 Na2O–12.2 Li2O. The substitution of Na with Li or K was done to determine the extend of alteration of the glass structure. This goal was best accomplished by 23Na MQ–MAS NMR. The two-dimensional spectra revealed three sites in the 24.4 mol% Na2O glass. These sites were not resolved in the 1D MAS NMR spectroscopy. In the mixed glasses, only two sites were obtained.  相似文献   

2.
《Journal of Non》2005,351(49-51):3730-3737
Ternary sodium–cobalt–phosphate glasses of the composition (50  x)Na2O–50P2O5xCoCl2 with x varying between 0 and 15 mol% prepared by melt quenching have been characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) techniques. Thermal (Tg, Tc) and electrical properties have been investigated. Infrared spectra reveal the formation of metaphosphate glasses (Q2 tetrahedral units) with symmetric bridging oxygen (P–O–P) and non-bridging oxygen (P–O). The spectra also indicate the formation of P–O–Co bonds in the metaphosphate glasses that replace P–O–Na+ bonds. The results of thermal studies correlate with these FT-IR findings and support the formation of P–O–Co bonds and an increased cross-link density with increasing CoCl2. This results in enhanced chemical durability and increased Tg and Tc of the glasses. The electrical conductivity parameters upon changing the composition have been correlated with structural changes in the glass matrix.  相似文献   

3.
Vitreous compositions in the (0.55−x)Na2O:xSrO:0.45P2O5 (0?x?0.55) system were characterized by differential scanning calorimetry and 31P solid state NMR. High strontium containing glasses were found to be partly crystallized. In the pure glass samples a general increase in Tg and a decrease in isotropic chemical shift with increasing x were observed. Two distinct linear ranges were observed in plots of these parameters against composition, with a transition point at x≈0.20. This composition corresponds to the point at which all Na+ ions associated with charge balance of the terminal Q1 phosphate tetrahedra are substituted for Sr2+. In the mixed cation glasses, this suggests a non-random distribution of cations, with preferential location of Sr2+ ions near the chain ends. Crystalline models have been used to discuss trends in the variation of chemical shift anisotropy and propose possible coordination environments for the metal cations in the glasses.  相似文献   

4.
Glasses of the system: (70−x) TeO2 + 15B2O3 + 15P2O5 + xLi2O, where x = 5, 10, 15, 20, 25 and 30 mol% were prepared by melt quench technique. Dependencies of their glass transition temperatures (Tg) and infrared (IR) absorption spectra on composition were investigated. It is found that the gradual replacement of oxides, TeO2 by Li2O, decreases the glass transition temperature and increases the fragility of the glasses. Also, IR spectra revealed broad weak and strong absorption bands in the investigated range of wave numbers from 4000 to 400 cm−1. These bands were assigned to their corresponding bond modes of vibration with relation to the glass structure.  相似文献   

5.
The preparation and structural investigation of 17O-enriched xNa2O-(100−x)P2O5 glasses (46.5?x?62.8) by nuclear magnetic resonance (NMR) is described. Enriched phosphoric acid was prepared by hydrolysis of PCl5 with 17O-enriched water and neutralized with sodium carbonate. The sodium metaphosphate was then melted at 800 °C for 15 h and quenched. Polyphosphate and ultraphosphate glass compositions were prepared by remelting the metaphosphate with sodium carbonate and phosphorus pentoxide, respectively. 31P magic angle sample spinning (MAS) NMR was used to determine the Na2O/P2O5 content in the glasses. 17O NMR spectra (quadrupole echo for non-rotating samples and multiple-quantum excitation for rotating samples (MQMAS)) show two oxygen sites in the samples with large quadrupolar coupling constants (4.7 and 7.7 MHz), in accordance with the high phosphorus electronegativity. According to the correlation of 17O quadrupolar constants with bond ionicity, these two components are attributed to bridging P-O-P and non-bridging P-O?Na oxygens. The average P-O-P bond angle is estimated with the quadrupolar asymmetry derived from the fit of the static echo spectra. The MQMAS spectrum shows a distribution of non-bridging oxygen chemical shifts, attributed to a variation of bond length and angle.  相似文献   

6.
The influences of different alkali and alkali-earth oxide substitutions on the properties of lithium-iron-phosphate (LIP) glasses have been studied. Na2O, K2O, MgO, CaO and BaO were used to substitute Li2O to prepare LIP glasses with molar compositions of (20 − x)Li2O − xR2O(RO) − 30Fe2O3 − 50P2O5 (x = 2.4, 4, 5.6 and 7.2). The glass transition temperature (Tg) was determined by the differential thermal analysis technique. The density and chemical durability of the prepared glasses were measured based on the Archimedes principle and the weight losses after the glasses were boiled in water. The results show that Tg decreases with the initial substitutions, whereas the density and chemical durability increase. The diminution of the aggregation effect of Li+ ions on the glass structure due to the decrease in Li+ concentration, the larger molecule weights of the substitutes, the mixed-alkali and depressing effects as well the slower mobility of substitute ions mainly contribute to the initial changes in Tg, density and chemical durability of the LIP glasses, respectively. Further increasing the amounts of substitutes brings about increasing diminution of the aggregation effect of Li+ ions and breakage of the glass network on the one hand and increasing amounts of substitutes with larger molecule weights and ion radii on the other hand. Both aspects influence the glass properties oppositely and consequently non-monotonic variations in the properties of LIP glasses with the substitutions are observed.  相似文献   

7.
Modified iron phosphate glasses have been prepared with nominal molar compositions [(1?x)·(0.6P2O5–0.4Fe2O3)]·xRySO4, where x = 0–0.5 in increments of 0.1 and R = Li, Na, K, Mg, Ca, Ba, or Pb and y = 1 or 2. In most cases the vast majority or all of the sulfate volatalizes and quarternary P2O5–Fe2O3–FeO–RyOz glasses or partially crystalline materials are formed. Here we have characterized the structure, thermal properties, chemical durability and redox state of these materials. Raman spectroscopy indicates that increasing modifier oxide additions result in depolymerization of the phosphate network such that the average value of i, the number of bridging oxygens per –(PO4)– tetrahedron, and expressed as Qi, decreases. Differences have been observed between the structural effects of different modifier types but these are secondary to the amount of modifier added. Alkali additions have little effect on density; slightly increasing Tg and Td; increasing α and Tliq; and promoting bulk crystallization at temperatures of 600–700 °C. Additions of divalent cations increase density, α, Tg, Td, Tliq and promote bulk crystallization at temperatures of 700–800 °C. Overall the addition of divalent cations has a less deleterious effect on glass stability than alkali additions. 57Fe Mössbauer spectroscopy confirms that iron is present as Fe2+ and Fe3+ ions which primarily occupy distorted octahedral sites. This is consistent with accepted structural models for iron phosphate glasses. The iron redox ratio, Fe2+/ΣFe, has a value of 0.13–0.29 for the glasses studied. The base glass exhibits a very low aqueous leach rate when measured by Product Consistency Test B, a standard durability test for nuclear waste glasses. The addition of high quantities of alkali oxide (30–40 mol% R2O) to the base glass increases leach rates, but only to levels comparable with those measured for a commercial soda-lime-silica glass and for a surrogate nuclear waste-loaded borosilicate glass. Divalent cation additions decrease aqueous leach rates and large additions (30–50 mol% RO) provide exceptionally low leach rates that are 2–3 orders of magnitude lower than have been measured for the surrogate waste-loaded borosilicate glass. The P2O5–Fe2O3–FeO–BaO glasses reported here show particular promise as they are ultra-durable, thermally stable, low-melting glasses with a large glass-forming compositional range.  相似文献   

8.
A series of new glasses of 70TeO2-(20 − x) ZnO-xPbO − 5La2O3-2.5K2O-2.5Na2O (mol%) doped with Yb3+ is presented. Thermal stability, spectra and laser properties of Yb3+ ions have been measured. It found that 70TeO2-15PbO-5ZnO-5La2O3-2.5K2O-2.5Na2O composition glass had fine stability ((TxTg)>190 °C), high-stimulated emission cross-section of 1.25 pm2 for the 2F5/2 → 2F7/2 transition and existed measured fluorescence lifetime of 0.94 ms and the broad fluorescence effective linewidth of 72 nm. Evaluated from the good potential laser parameters, this system glass is excellent for short pulse generation in diode pumped lasers, short pulse generation tunable lasers, high-peak power and high-average power lasers.  相似文献   

9.
《Journal of Non》2005,351(40-42):3356-3360
The thermal, mechanical, chemical properties and the structure of (50  x)BaO–xZnO–50P2O5 (0  x  50 mol%) glasses were investigated. For these glasses, the density (ρ), glass transition temperature (Tg), dissolution rate (DR), 31P magic angle spinning nuclear magnetic resonance (MAS-NMR) spectra and Fourier-transformed infrared (FTIR) spectra were determined. As BaO was replaced by ZnO, all the properties were similarly decreased in density, Young’s modulus, Tg and water resistance. FTIR analyses revealed a shortening of phosphate chains by the shift of (P–O–P)as band to a higher wave number owing to the substitution ZnO of BaO. The NMR spectra showed that the replacement of BaO by ZnO decreased the concentration of Q2-tetrahedral sites and increased that of Q1-tetrahedral sites.  相似文献   

10.
《Journal of Non》2007,353(18-21):1828-1833
ZnO–B2O3–P2O5 glasses formulated with Sb2O3 were investigated in the series 50ZnO–10B2O3–40P2O5 + xSb2O3 (x = 0–70 mol%). With increasing Sb2O3 content, the values of glass transition temperature decrease from 492 °C down to 394 °C. The dissolution rate of the glasses reveals a maximum for the glass with x = 15 mol% Sb2O3. Raman spectra with increasing Sb2O3 content reflect the depolymerisation of phosphate chains. Antimony at low Sb2O3 content forms individual SbO3 pyramids manifested in the Raman spectra by a broad vibrational band at ∼520–690 cm−1. In the glasses with a higher Sb2O3 content SbO3 units link into chains and clusters with Sb–O–Sb bridges manifested in the Raman spectra by a strong broad band at 380–520 cm−1. The 31P MAS NMR spectra with increasing Sb2O3 content reflect the depolymerisation of phosphate chains at low Sb2O3 content and only small changes in the PO4 coordination at a high Sb2O3 content. 11B MAS NMR spectra reveal a steady transformation of B(OP)4 units into B(OP)4−x(OSb)x units, accompanied by the transformation of BO4 into BO3 units with increasing Sb2O3 content.  相似文献   

11.
G.D. Khattak  A. Mekki  L.E. Wenger 《Journal of Non》2009,355(43-44):2148-2155
Vanadium phosphate glasses with the nominal chemical composition [(V2O5)x(P2O5)1?x], where x = 0.30, 0.40, 0.50, and 0.60, have been prepared and investigated by X-ray photoelectron spectroscopy (XPS) and magnetization measurements. Asymmetries found in the O 1s, P 2p, and V 2p core level spectra indicate the presence of primarily P–O–P, P–O–V, and V–O–V structural bonds, a spin–orbit splitting of the P 2p core level, and more than one valence state of V ions being present. The magnetic susceptibility data for these glasses follow a Curie–Weiss behavior which also indicates the presence of some V ions existing in a magnetic state, i.e., a valence state other than that of the non-magnetic V5+. From qualitative comparisons of the abundance of the bridging oxygen or P–O–P sites as determined from the areas under the various O 1s peaks with the abundances of differing phosphate structural groups associated with the presence of different valence states of the vanadium ions, a glass structure model consisting of a mixture of vanadate phosphate phases is proposed for these glass samples. These include V2O5, VOPO4, (VO)2P2O7, VO(PO3), and V(PO3)3 with the abundance of orthophosphate (PO4)3? units increasing with increasing vanadium content.  相似文献   

12.
The effect of the variation in phosphate (P2O5) content on the properties of two series of bioactive glasses in the quaternary system SiO2-Na2O-CaO-P2O5 was studied. The first series (I) was a simple substitution of P2O5 for SiO2 keeping the Na2O:CaO ratio fixed (1:0.87). The second series (II) was designed to ensure charge neutrality in the orthophosphate (), therefore as P2O5 was added the Na2O and CaO content was varied to provide sufficient Na+ and Ca2+ cations to charge balance the orthophosphate present. Network connectivity’s of the glasses were calculated, and densities and thermal expansion coefficients predicted using the Appen and Doweidar models, respectively. Theoretical densities were measured using the Archimedes principle. Characteristic temperatures, namely the glass transition temperature, Tg, and crystallization temperatures, Tx, were obtained using differential analysis (DTA). Two crystallization exotherms were observed for both glass series (Txi and Txii). Both Tg and Tx decreased with P2O5 addition for both series. The working range of the glasses, Tx-Tg was shown to increase to a maximum at around 4 mol% P2O5 then decrease at higher P2O5 contents for both series. Thermal expansion coefficients were measured using dilatometry increasing with P2O5 addition and showed good agreement with the Appen values. Dilatometric softening points, Ts, were also measured, which increased with P2O5 addition. X-ray diffraction (XRD) was performed on the glasses to confirm their amorphous nature. The glass containing 9.25 mol% P2O5 from series I exhibited well-defined peaks on the XRD trace, indicating the presence of a crystalline phase.  相似文献   

13.
《Journal of Non》2007,353(24-25):2355-2362
EPR and optical absorption spectra of 0.5 mol% MnO2 doped xLi2O–(30  x)Na2O–69.5B2O3 (5  x  25) glasses have been studied. The EPR spectra exhibit resonance signals characteristic of Mn2+ ions. The resonance signal at g  2.0 is due to Mn2+ ions in an environment close to octahedral symmetry, whereas the resonances at g  4.3 and g  3.3 are attributed to the rhombic surroundings of the Mn2+ ions. The ionic character (A), the number of spins participating in resonance (N), optical band gap energies (Eopt) and Urbach energies (ΔE) show the mixed alkali effect (MAE) with composition. The present study gives an indication that the size of alkalis we choose, is also an important contributing factor in showing the MAE. The variation of N with temperature obeys the Boltzmann law. The optical absorption spectra show a single broad band at ∼21 000 cm−1 corresponding to the transition 6A1g(S)  4T1g(G) which exhibits a blue shift with x. The theoretical values of optical basicity (Λth) have also been evaluated.  相似文献   

14.
Bulk glasses of the series (1 ? x)[0.5K2O–0.1B2O3–0.4P2O5]–xNb2O5 with x = 0–45.7 mol% Nb2O5 were prepared by slow cooling in air and investigated by Raman, 31P, and 11B MAS NMR spectroscopy. The incorporation of Nb2O5 into the parent borophosphate glass results in a substantial increase in the glass transition temperature and chemical durability of glasses. Raman spectra showed that Nb atoms form distorted NbO6 octahedra, which are isolated at low Nb2O5 content, whereas at higher Nb2O5 content they form clusters. 11B NMR spectra of the glasses revealed the interaction between Nb2O5 and BO4 tetrahedral units, which results in a partial transformation of tetrahedral BO4 units to trigonal BO3 units and the formation of mixed B(OP)4?n(ONb)n units.  相似文献   

15.
Radiation defects induced by ion bombardment of multicomponent oxide glasses of five compositions (phosphates and borosilicates) were investigated by means of electron paramagnetic resonance (EPR). The samples were implanted with N+, O+, Ar+, Mn+, Cu+ and Pb+ ions at energy E=150 keV at three different doses between 3×1015 and 1017 ions/cm2. The broad anisotropic EPR spectra with principal g-values answering the relationship gz>gy>gx˜ge (ge is g-factor of free electron) were observed for the samples of all five compositions. The g-values depend on glass composition. For example, gz ranges from 2.016 to 2.057. Computer simulation shows that the spectra of many samples are superpositions of two spectra with g-values answering the mentioned relationship. These spectra are attributed to molecular O2 ions weakly coupled with glass network. In some samples narrow almost symmetric lines with g=2.0025±0.0005 were observed. The possible radiation defects responsible for this signal are discussed.  相似文献   

16.
Room temperature electron spin resonance (ESR) spectra and temperature dependent magnetic susceptibility measurements have been performed to investigate the effect of iron ions in 41CaO · (52 − x)SiO2 · 4P2O5 · xFe2O3 · 3Na2O (2 ? x ? 10 mol%) glasses. The ESR spectra of the glass exhibited the absorptions centered at g ≈ 2.1 and g ≈ 4.3. The variation of the intensity and linewidth of these absorption lines with composition has been interpreted in terms of variation in the concentration of the Fe2+ and Fe3+ in the glass and the interaction between the iron ions. The magnetic susceptibility data were used to obtain information on the relative concentration and interaction between the iron ions in the glass.  相似文献   

17.
We report continuous glass formation and glass transition temperatures Tg for the pseudo-binary systems xM2O (1 ? x) (0.87B2O30.13Al2O3) to x = 0.675 for M = Na and 0.575 for M = Li. A dependence of both Tg and glass-forming range on starting materials is found at high alkali contents, and attributed to retained CO2. Maxima in Tg for both binary and pseudo-binary systems are quantitatively described in terms of two effects: (i) creation of 4-coordinated borons (increasing Tg), and (ii) creation of non-bridging [BO3] oxygens (decreasing Tg. To first approximation we find the latter imparting a stronger effect on Tg.  相似文献   

18.
Copper ions incorporated into alkaline earth zinc borate glasses 10RO + 30ZnO + 60B2O3 (R = Mg, Ca and Sr) and 10SrO + (30 ? x)ZnO + 60B2O3 + xCuO (x = 0, 0.1, 0.3, 0.5, and 0.7 wt.%) were characterized by electron paramagnetic resonance (EPR), optical absorption and FTIR techniques. The EPR spectra of all the glass samples exhibit resonance signals characteristic of Cu2+ ions. The values of spin-Hamiltonian parameters indicate that the Cu2+ ions in alkaline earth zinc borate glasses were present in octahedral sites with tetragonal distortion. The spin concentration (N) participating in resonance was calculated as a function of temperature for strontium zinc borate (SrZB) glass sample containing 0.7 wt.% of Cu2+ ions and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility (χ) was calculated at different temperatures and the Curie constant was evaluated from the 1/χ-T graph. The optical absorption spectra of these samples show only one absorption band. The optical band gap energies (Eg) and Urbach energy (ΔE) are calculated from their ultraviolet edges. The FTIR studies show different stretching and bending vibrations of alkaline earth zinc borate glasses.  相似文献   

19.
The thermal properties (expansion, Tg and TSOFT.) of glasses, having 56-66% P2O5, 14.8-34.2% Fe2O3 and 2-25 wt% additions of SiO2, Al2O3, Na2O and UO2, were comparatively estimated from dilatometric measurements in similar conditions. The Tg reversibility was clearly verified by varying the heating rates between 1 and 5 °C min−1. From linear equations fits of the various glass properties as functions of the six components it is suggested the iron, sodium and uranium oxides decrease the thermal expansion (for 50 < T ? 300 °C), Tg and TSOFT. From DTA/XRD analysis of three glasses it was confirmed the crystallization tendency decreased with increasing the UO2 level in the glasses. Leaching test data for two compositions containing Na2O suggest addition of UO2 increases the chemical durability of the related glass. The roles of UO2, Na2O and Fe-oxide species as structural components of the glass network are discussed.  相似文献   

20.
M. Shapaan 《Journal of Non》2009,355(16-17):926-931
This paper presents the results of kinematical studies of glass transition and crystallization in the unconventional glassy system (60?x)V2O5xAs2O3–20Fe2O3–10CaO–10Li2O (x = 0, 10, 20, 30, 40 mol%) using differential scanning calorimetry (DSC). The glass transition temperatures (Tg), the onset crystallization temperatures (Tc), and the peak temperatures of crystallization (Tp) were found to be dependent on the compositions and the heating rates. From the dependence on heating rates of (Tg) and (Tp) the activation energy for glass transition (Eg) and the activation energy for crystallization (Ec) are calculated. The thermal stability of (60?x)V2O5xAs2O3–20Fe2O3–10CaO–10Li2O was evaluated in term of, criteria ΔT = Tc ? Tg. All the results confirm that the thermal stability increase with increasing As2O3 contents. From the electric–dielectric measurements it was found that, σdc, σac(ω) and θD/2 decrease with increasing As2O3 contents. It is also observed that the dielectric constant (ε1(ω)) and the loss factor (tan δ) decrease with increasing As2O3 contents in this glass system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号