首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
We report on the optical spectroscopy of a series of ZnO/(Zn, Mg)O quantum wells of different widths, using time-resolved photoluminescence. The samples were grown by molecular beam epitaxy on ZnO templates, themselves deposited on sapphire substrates. The barriers consist of Zn0.78Mg0.22O layers. The presence of large internal electric fields in these quantum wells results in a competition between quantum confinement and the quantum confined Stark effect as the quantum well width is varied. A transition energy lying 0.5 eV below the ZnO excitonic gap was observed for the widest of our wells. The PL spectra of the wide quantum wells were obtained using time-integrated photoluminescence, taking a great care with screening effects induced by their very slow dynamics. The effect of the built-in electric field on the excitonic properties was investigated. The excitonic fine structure is shown to depend strongly on the enhancement or suppression of the exchange interaction as a function of the quantum well width.  相似文献   

2.
We report on the recombination dynamics of band edge photoluminescence (PL) in GaAs/AlxGa1-xAs multiple quantum wells which have been selectively doped with Si donors at a variety of positions across the well. We observe PL lines associated with the ground state n = 1 light and heavy hole exciton transitions, as well as several bound exciton states and a donor-to-continuum transition which occur below the dominant heavy hole excitons. The recombination lifetime of the donor-to-continuum (Si(c)→VB) transition is significantly longer than that measured for the excitonic transitions. The Si(c)→VB transition is 20 times longer than the lifetime of the hhX. This result clearly suggests that this line is not an exciton-related transition and may be consistent with what is expected for a localized donor-to-continuum transition. Measurements of the lifetime as a function of temperature and a measure of the recombination dynamics as a function of magnetic field support this conclusion.  相似文献   

3.
1-x Gex single quantum wells (x=0.19) grown by rapid thermal chemical vapor deposition at 625 °C. A well-resolved strong excitonic luminescence with TO-phonon and no-phonon transitions with a full width at half-maximum as low as 6 meV is observed for a quantum well of 98 Å. The photoluminescence emission shows a significant blue shift and a broadening with excitation intensity. The results are analysed in terms of localization of photoinduced charge carriers at the heterointerfaces. Received: 11 September 1996/Accepted: 15 August 1997  相似文献   

4.
We report on optical measurements performed on two 53Å and 106Å wide ZnSe quantum wells separated by a 350Å thick Zn0.73Mn0.27Se barrier. The measurements were performed by means of cw photoluminescence up to 20T, cw photoluminescence excitation and time-resolved photoluminescence spectroscopies up to 9T, at low temperature (4.2K). The fundamental optical transition changes its nature from a type-I light hole excition to a type-II heavy hole exciton as a function of applied magnetic field. Calculations taking into account the strain, Zeeman, and excitonic effects support the experimental findings and allows us to specify the value of the relative valence band offset.  相似文献   

5.
We present systematic studies of the temperature dependence of linewidths and lifetimes of excitonic transitions in quantum wells grown by molecular beam epitaxy using both photoluminescence(PL) and optical absorption. The temperature ranged from 6K to room temperature. Samples under investigation were lattice-matched GaAs/AlGaAs and InGaAs/InAlAs, and strained InGaAs/GaAs and InGaAs/AlGaAs quantum wellssystems. In addition, the effects of well-size variations in GaAs/AlGaAs quantum wells were measured and analyzed. In all cases we were able to observe the excitonic transitions up to room temperature. By a careful fitting of the experimental data we separated the exciton transitions from band-to-band transitions. By deconvoluting the excitonic transitions we obtained the homogeneous and inhomogeneous linewidths. The homogeneous linewidths were used to calculate the exciton lifetimes as a function of temperature using the Heisenberg uncertainty principle. We found the lifetime decreases significantly with temperature and increases with increasing well size. These results are interpreted in terms of the exciton-phonon interaction and are expected to be very useful for the design of semiconductor optical devices operating at different temperatures.  相似文献   

6.
Lines corresponding to localized excitonic states formed from “above-barrier” electron and/or hole states (specifically, excitation lines of excitons formed by an electron localized in a QW and a free heavy hole) have been observed in the photoluminescence excitation spectra of GaAs/Al0.05Ga0.95As structures with quantum wells (QWs), each containing one single-particle size-quantization level for charge carriers of each type. A computational method is proposed that permits finding the binding energy and wave functions of excitons in QWs taking the Coulomb potential into account self-consistently. The computed values of the excitonic transition energies agree quite well with the experimental results. Pis’ma Zh. éksp. Teor. Fiz. 70, No. 9, 613–619 (10 November 1999)  相似文献   

7.
Polaron effects on excitons in parabolic quantum wells are studied theoretically by using a variational approach with the so-called fractional dimension model. The numerical results for the exciton binding energies and longitudinal-optical phonon contributions in GaAs/Al0.3Ga0.7As parabolic quantum well structures are obtained as functions of the well width. It is shown that the exciton binding energies are obviously reduced by the electron (hole)-phonon interaction and the polaron effects are un-negligible. The results demonstrate that the fractional-dimension variational theory is effectual in the investigations of excitonic polaron problems in parabolic quantum wells.  相似文献   

8.
Summary Measurements of photoluminescence, excitation photoluminescence and reflectance are performed at various temperatures on a series of GaAs/Ga1−x Al x As quantum well structures grown by molecularbeam epitaxy. The selective photoluminescence data of the GaAs buffer layers are analysed in order to correlate the optical properties with the growth conditions. The Stokes shift of the excitation emission line from quantum wells is investigated under various excitation conditions. A considerable decrease of the Stokes shift is observed in the case of nonresonant and intense excitations. Also the extrinsic photoluminescence, as well as its temperature dependence, are interpreted. In addition, the temperature effects on both the bulk and quantum well spectra are shown to clarify the excitation features and the contribution of the interband transitions. To speed up publication, the authors of this paper has agreed to not receive the proofs for correction.  相似文献   

9.
《Solid State Communications》2002,121(9-10):571-574
Photoluminescence (PL) measurements on the CdTe/ZnTe strained single quantum wells grown by using the molecular beam epitaxy technique showed that the sharp excitonic peaks corresponding to the transition from the first electronic subband to the first heavy-hole (E1–HH1) were shifted to lower energy with increasing well width. The (E1–HH1) interband transitions were calculated by using an envelope function approximation taking into account the strain effects, and the values were in reasonable agreement with those obtained from the (E1–HH1) excitonic transitions of the PL spectra. The activation energies of the confined electrons in the CdTe quantum well were obtained from the temperature-dependent PL spectra, and their values increased with increasing CdTe well width due to the quantum confinement effect. The present results can help to improve the understanding of the activation energies dependent on the CdTe well width in CdTe/ZnTe single quantum wells.  相似文献   

10.
The kinetics of indirect photoluminescence of GaAs/AlxGa1−x As double quantum wells, characterized by a random potential with a large amplitude (the linewidth of the indirect photoluminescence is comparable to the binding energy of an indirect exciton) in magnetic fields B≤12 T at low temperatures T≥1.3 K is investigated. It is found that the indirect-recombination time increases with the magnetic field and decreases with increasing temperature. It is shown that the kinetics of indirect photoluminescence corresponds to single-exciton recombination in the presence of a random potential in the plane of the double quantum wells. The variation of the nonradiative recombination time is discussed in terms of the variation of the transport of indirect excitons to nonradiative recombination centers, and the variation of the radiative recombination time is discussed in terms of the variation of the population of optically active excitonic states and the localization radius of indirect excitons. The photoluminescence kinetics of indirect excitons, which is observed in the studied GaAs/AlxGa1−x As double quantum wells for which the random potential has a large amplitude, is qualitatively different from the photoluminescence kinetics of indirect excitons in AlAs/GaAs wells and GaAs/AlxGa1−x As double quantum wells with a random potential having a small amplitude. The temporal evolution of the photoluminescence spectra in the direct and indirect regimes is studied. It is shown that the evolution of the photoluminescence spectra corresponds to excitonic recombination in a random potential. Zh. éksp. Teor. Fiz. 115, 1890–1905 (May 1999)  相似文献   

11.
Growth, photoluminescence characterisation and time-resolved optical measurements of electron spin dynamics in (1 1 0)-oriented GaAs/AlGaAs quantum wells are described. Conditions are given for MBE growth of good-quality quantum wells, judged by the width of low-temperature excitonic photoluminescence. At 170 K the electron spin relaxation rate in (1 1 0)-oriented wells shows a 100-fold reduction compared to equivalent (1 0 0)-oriented wells and also a 10-fold increase with applied electric field from 20 to 80 kV cm−1. There is evidence for similar dramatic effects at 300 K. Spin relaxation is field independent below 20 kV cm−1 reflecting quantum well asymmetry. The results indicate the achievability of voltage-gateable quantum well spin memory time longer than 10 ns at room temperature simultaneously with high electron mobility.  相似文献   

12.
A theory of excitonic polarons in semiconductor quantum wells is presented. Using a unitary transformation, we have diagonalized the exciton-phonon interaction operator in a quasi-two-dimensional system partially and then calculated the ground-state energy of an excitonic polaron. We have numerically evaluated the energy gap shift and effective mass of an excitonic polaron. We have numerically evaluated the energy gap shift and effective mass of an excitonic polaron in GaAs-Al x Ga1–x As systems. The results obtained here indicate that the polaronic effect is significant in the case of the light hole excitons in quantum wells of small well widths.  相似文献   

13.
We report an investigation of the interface quality of the Al0.2Ga0.8As/GaAs triple quantum wells (QWs) grown on the GaAs substrates 0° and 6° off (100) towards 〈111〉A at a high CO environment, using the photoluminescence technique. The direct correlation between the quantum well quality and the performance of lasers which contain such quantum wells as an active region is also reported. It is found that impurity-related photoluminescence is observed only in the sample grown on the exact (100) GaAs substrate but not in the tilted one, as confirmed by temperature dependence results. The full width at half maximum (FWHM) of the intrinsic luminescence is as high as 9.0 meV in the 0° tilted samples and decreases to 3.10 meV in the samples misoriented 6°, indicating a remarkable difference in their interface quality. The impurities incorporated into the interfaces of the QWs are carbon, incorporation of which becomes unobservable by photoluminescence when the quantum wells are grown on substrates misoriented by 6° degrees. The threshold current and quantum efficiency of the laser devices with Al0.2Ga0.8As/GaAs quantum wells as their active region are found to be directly related to the interfacial quality of the quantum wells.  相似文献   

14.
Excitonic properties and the dynamics are reported in quantum dots (QDs) and quantum wells (QW) of diluted magnetic semiconductors. Transient spectroscopies of photoluminescence and nonlinear-optical absorption and emission have been made on these quantum nanostructures. The Cd1−x MnxSe QDs show the excitonic magnetic polaron effect with an increased binding energy. The quantum wells of the Cd1−x MnxTe/ZnTe system display fast energy and dephasing relaxations of the free and localized excitons as well as the tunneling process of carriers and excitons in the QWs depending on the barrier widths. The observed dynamics and the enhanced excitonic effects are the inherent properties of the diluted magnetic nanostructures. Fiz. Tverd. Tela (St. Petersburg) 40, 846–848 (May 1998) Published in English in the original Russian journal. Reproduced here with stylistic changes by the Translation Editor.  相似文献   

15.
Photoluminescence and photoluminescence excitation spectroscopy on Ga.47In.53As multi quantum wells confined either by homogenous ternary Al.48In.52As barriers or by Ga.47In.53As/Al.48In.52As short-period superlattice (SPS) barriers show that the confinement by SPS barriers improves the edge luminescence significantly. The spectral width of the free-exciton absorption and the low-temperature emission peak as well as the Stokes-shift between emission and excitation spectra are reduced as compared to samples clad by homogenous ternary Al.48In.52As barriers. Based on temperature-dependent emission and excitation measurements, the dominant low-temperature emission line in the SPS-clad Ga.47In.53As multi quantum wells is assigned to intrinsic excitonic recombination.  相似文献   

16.
The temperature dependence of excitonic transitions in double quantum well heterostructures in the temperature range of 2–300 K were investigated. A crossing between excitonic transition experimental curves as a function of temperature in quantum wells of the same thickness and different barrier height is observed. The influence of the barrier height on the temperature dependence of excitonic states in the quantum wells is analyzed.  相似文献   

17.
We report on photoluminescence emission features which are observed from GaAs/AlGaAs multiple quantum wells only at elevated temperatures (T>10K), using weak cw laser excitation. These features have energies higher than those of the heavy and light hole excitons and are associated with interband transitions between excited confinement conduction and valence subbands. Their energies are compared with values calculated from measured well dimensions and accepted band parameters for a series of samples with well widths between 80 and 375Å.  相似文献   

18.
The optical properties of GainAsInP quantum wells are studied in magnetic fields of up to 16T. A comparison of the absorption and photoluminescence spectra of a series of multiple quantum wells provides evidence that the photoluminescence occurs from excitons in which the hole is localised. This localisation is shown to be present in a highly doped sample with a sheet carrier density of ∼1012 cm−2, indicating that the localisation is not screened out by high free carrier densities. A theoretical fit to measured Landau level transitions in a 100Å multiple quantum well allows values for the carrier masses, electron non-parabolicity and exciton binding energy to be determined.  相似文献   

19.
The excitonic transitions between the ground electron and hole quantum well sublevels in strained InxGa1-xAs-AlyGa1-yAs multiple quantum well structures (x = 0.12−0.35 and y = 0.2−0.35) have been investigated by means of photoluminescence and photoconductivity measurements. The molecular beam epitaxy grown structures contained an AlyGa1-yAs matrix with one unstrained GaAs and three strained InxGa1-xAs quantum wells one of which was in the GaAs cladding layers. The ratio of the conduction band edhe line up to the band gap offset for the strained InxGa1-xAs-unstrained AlyGa1-yAs interface has been found to be 0.67 ± 0.08 for the studied regions of x and y.  相似文献   

20.
We report photoluminescence studies of MOCVD grown, GaAsAlxGa1?xAs single quantum wells which were intensly excited with a pulse dye laser at T=2K. For a well width of d~40Å, the spectra are interpreted as due to the radiative recombination of a hot electron-hole plasma confined to the well. The density of charge carriers and their temperature depend upon the excitation intensity, and vary in the range of 1011–1013 cm?2 and 100–500K for an absorbed photon flux of 1013–1016 photons-cm?2 per pulse, respectively. The observed spectral features are identified as the e1-hh1 and e1-lh1 transitions and two additional bands which are tentatively assigned to transitions involving virtual bound states of either the electron or the hole. The electron-hole plasma spectra of the d~40Å sample are strongly polarized perpendicular to the well quantization axis. For wider wells (d~80 and 150Å) smaller photoexcited carrier densities were observed for the same absorbed photon flux. It is thus concluded that the capture efficiency of the well is small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号