首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 466 毫秒
1.
NMR spectroscopy was employed for the detection of adulteration of refined olive oil with refined hazelnut oil. Fatty acids and iodine number were determined by 1H NMR, whereas 31P NMR was used for the quantification of minor compounds including phenolic compounds, diacylglycerols, sterols, and free fatty acids (free acidity). Classification of the refined oils based on their fatty acids content and the concentration of their minor compounds was achieved by using the forward stepwise canonical discriminant analysis (CDA) and the classification binary trees (CBTs). Both methods provided good discrimination between the refined hazelnut and olive oils. Different admixtures of refined olive oils with refined hazelnut oils were prepared and analyzed by 1H NMR and 31P NMR spectroscopy. Subsequent application of CDA to the NMR data allowed the detection of the presence of refined hazelnut oils in refined olive oils at percentages higher than 5%. Application of the non-linear classification method of the binary trees offered better possibilities of measuring adulteration of the refined olive oils at a lower limit of detection than that obtained by the CDA method.  相似文献   

2.
Because of its high price, extra virgin olive oil is frequently targeted for adulteration with lower quality oils. This paper presents an innovative optical technique capable of quantifying and discriminating the adulteration of extra virgin olive oil caused by lower-grade olive oils. An original set-up for diffuse-light absorption spectroscopy in the wide 400–1,700 nm spectral range was experimented. It made use of an integrating sphere containing the oil sample and of optical fibers for illumination and detection; it provided intrinsically scattering-free absorption spectroscopy measurements. This set-up was used to collect spectroscopic fingerprints of authentic extra virgin olive oils from the Italian Tuscany region, adulterated by different concentrations of olive-pomace oil, refined olive oil, deodorized olive oil, and refined olive-pomace oil. Then, a straightforward multivariate processing of spectroscopic data based on principal component analysis and linear discriminant analysis was applied which was successfully capable of predicting the fraction of adulterant in the mixture, and of discriminating its type. The results achieved by means of optical spectroscopy were compared with the analysis of fatty acids, which was carried out by standard gas chromatography.  相似文献   

3.
Extra Virgin olive oils (7 samples) originating from different areas of Tuscany, defective olive oils (5 samples), commercial edible seed oils (4 samples) and two commercial samples of olive oil (one declared ‘extra virgin olive oil’ and one ‘olive oil’) were studied by different calorimetric techniques: high sensitivity isothermal, differential scanning, and modulated scanning calorimetry. The temperature interval (–60) – (+30)°C was explored for monitoring: i) the main features of the liquid↔solid phase transitions, ii) the nucleation and growth rate of the polymorphous crystalline phases of the triacylglicerols, and iii) the melting process. This investigation was planned for verifying the utility and effectiveness of calorimetry for screening quality and origin of olive oil. To this end, the main calorimetric operation modes have been applied, the experimental results reported and their utility for developing an effective and reliable screening protocol discussed.  相似文献   

4.
采用差示扫描量热法(DSC)对进口特级初榨橄榄油中葵花籽油的掺假鉴别进行了系统研究。由橄榄油入手考察了升降温循环实验条件下油品的重复性及数据可靠性,以此为基础提出采用程序降温的方法研究油品的结晶特性。统计了研究体系内的8种特级初榨橄榄油、6种其他食用油以及5种比例的模拟掺假油的结晶峰温度值,建立了回归方程。结果表明:进口特级初榨橄榄油在-60~-46℃区间内具有尖锐的结晶峰;随着掺入葵花籽油比例的升高,模拟掺假油的结晶温度逐渐向低温区移动,结晶峰形由尖锐逐渐变平坦;由结晶起始温度和结晶峰值温度分别相对于掺假油体积分数建立的回归方程具有很好的相关性,可以快速准确地鉴别特级初榨橄榄油。  相似文献   

5.
Two mathematical methods to quantify adulterations of extra virgin olive oil (EVOO) with refined olive oil (ROO), refined olive-pomace oil (ROPO), sunflower (SO) or corn (CO) oils have been described here. These methods are linear and non linear models based on chaotic parameters (CPs, Lyapunov exponent, autocorrelation coefficients and two fractal dimensions) which were calculated from UV-vis scans (190-900 nm wavelength) of 817 adulterated EVOO samples. By an external validation process, linear and non linear integrated CPs/UV-vis models estimate concentrations of adulterant agents with a mean correlation coefficient (estimated versus real concentration of cheaper oil) greater than 0.80 and 0.97 and a mean square error less than 1% and 0.007%, respectively. In the light of the results shown in this paper, the adulteration of EVOO with ROO, ROPO, SO and CO can be suitably detected by only one chaotic parameter integrated on a radial basis network model.  相似文献   

6.
In the present work, we propose the use of direct coupling of a headspace sampler to a mass spectrometer for the detection of adulterants in olive oil. Samples of olive oils were mixed with different proportions of sunflower oil and olive-pomace oil, respectively, and patterns of the volatile compounds in the original and mixed samples were generated. Application of the linear discriminant analysis technique to the data from the signals was sufficient to differentiate the adulterated from the non-adulterated oils and to discriminate the type of adulteration. The results obtained revealed 100% success in classification and close to 100% in prediction. The main advantages of the proposed methodology are the speed of analysis (since no prior sample preparation steps are required), low cost, and the simplicity of the measuring process.  相似文献   

7.
A multiresidue method for determining major pesticides and polycyclic aromatic hydrocarbons (PAHs) in olive oils in a single injection by use of gas chromatography/tandem mass spectrometry (GC-MS/MS) is proposed. Samples are previously extracted with an acetonitrile/n-hexane mixture and cleaned up by gel permeation chromatography. Electron ionization and chemical ionization allow pesticides and PAHs to be determined in a single analysis. The precision obtained was quite satisfactory (relative standard deviations ranged from 3 to 7.8%), and so were recoveries (84-110%). The linear relation was observed from 1 to 500 microg/kg for pesticides and 0.3 to 200 microg/kg for PAHs; also, the determination coefficient, R(2), was better than 0.995 in all instances. The proposed method was applied to the routine analysis of PAH and pesticide residues in virgin and refined olive oil and olive-pomace oil samples.  相似文献   

8.
Extra-virgin olive oils contain many bioactive substances that are phenolic compounds. The survival of Arcobacter-like strains in non-buffered (WEOO) and buffered (BEOO) extracts of olive oils were studied. Time kill curves of different strains were measured in the environment of olive oil extracts of different grades. The activity of the extracts was also monitored for biofilm formation using the Christensen method. In vitro results revealed that extra-virgin olive oil extracts exhibited the strongest antimicrobial effects, especially non-buffered extracts, which exhibited strain inhibition after only 5 min of exposure. The weakest inhibitory effects were observed for olive oil extracts. A decrease in biofilm formation was observed in the environment of higher WEOO concentrations, although at lower concentrations of extracts, increased biofilm formation occurred due to stress conditions. The dialdehydic forms of oleuropein derivatives, hydroxytyrosol, and tyrosol were the main compounds detected by HPLC-CoulArray. The results indicate that not all olive oils had a similar bactericidal effect, and that bioactivity primarily depended on the content of certain phenolic compounds.  相似文献   

9.
The recently introduced technique of an atmospheric pressure photoionization (APPI) source coupled to quadrupole time-of-flight mass spectrometry (QqTOFMS) has been applied to fast olive oil fingerprinting on the basis of the accurate mass measurements obtained with this instrumentation. The key compounds can be characterized as [M+H]+ (produced by proton transfer) or as [M]+* (by charge transfer) ions in the mass spectra. [M+H]+ ions, however, show higher abundance, especially for triacylglycerols. Other ions present in APPI-MS are the acylium ion [RiCO]+ and [RiCO-H2O]+. This latter ion is absent in the electrospray ionization (ESI)-MS spectra, and this represents valuable complementary information. Several critical parameters in the APPI source were optimized such as LC eluent composition, ion spray voltage and, especially, declustering potential. APPI-QqTOFMS allows easy discrimination among different edible oils: olive, extra virgin olive, olive-pomace, hazelnut, sunflower, corn and several mixed oils, with high throughput (approximately 1 min per sample). Cluster analysis was applied to obtain the best experimental conditions for oil discrimination on the basis of declustering potential. Principal components analyses of these APPI-MS spectra show that the approach can be used for studies of olive oil adulteration with other oils, even in the case of hazelnut oil that exhibits a high chemical similarity with olive oil.  相似文献   

10.
This work presents a study of the thermal decomposition of commercial vegetable oils and of some of their thermal properties by termogravimetry (TG), derivative termogravimetry (DTG) and by differential thermal analysis (DTA). Canola, sunflower, corn, olive and soybean oils were studied. A simultaneous SDT 2960 TG/DTA from TA Instruments was used, with a heating rate of 10 K min-1 from 30 to 700°C. A flow of 100 mL min-1 of air as the purge gas was used in order to burnout the oils during analysis to estimate their heat of combustion. From the extrapolated decomposition onset temperatures obtained from TG curves, it can be seen that corn oil presents the highest thermal stability (306°C), followed by the sunflower one (304°C). Olive oil presents the lowest one (288°C). The heat of combustion of each oil was estimated from DTA curves, showing the highest value for the olive oil. Except for corn oil, which presents a significantly different thermal decomposition behavior than the other oils, a perfect linear correlation is observed, with negative slope, between the heat of combustion of an oil and its respective extrapolated onset temperature of decomposition in air. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Control of adulteration of olive oil, together with authentication and contamination, is one of the main aspects in the quality control of olive oil. Adulteration with hazelnut oil is one of the most difficult to detect due to the similar composition of hazelnut and olive oils; both virgin olive oil and olive oil are subjected to that kind of adulteration. The main objective of this work was to develop an analytical method able to detect adulteration of virgin olive oils and olive oils with hazelnut oil by means of its analysis by a headspace autosampler directly coupled to a mass spectrometer used as detector (ChemSensor). As no chromatographic separation of the individual components of the samples exists, a global signal of the sample is obtained and employed for its characterization by means of chemometric techniques. Four different crude hazelnut oils from Turkey were employed for the development of the method. Multivariate regression techniques (partial least squares and principal components analysis) were applied to generate adequate regression models. Good values were obtained in both techniques for the parameters employed (standard errors of prediction (SEP) and prediction residual error sum of squares (PRESS)) to evaluate its goodness. With the proposed method, minimum adulteration levels of 7 and 15% can be detected in refined and virgin olive oils, respectively. Once validated, the method was applied to the detection of such adulteration in commercial olive oil and virgin olive oil samples.  相似文献   

12.
A new NMR-based method for the discrimination of olive oils of any grade from seed oils and mixtures thereof was developed with the aim of allowing the verification of olive oil authenticity. Ten seed oils and seven monovarietal and blended extra virgin olive oils were utilized to develop a principal component analysis (PCA) based analysis of 1H NMR spectra to rapidly and accurately determine the authenticity of olive oils. Another twenty-eight olive oils were utilized to test the principal component analysis (PCA) based analysis. Detection of seed oil adulteration levels as low as 5% v/v has been shown using simple one-dimensional proton spectra obtained using a 400 MHz NMR spectrometer equipped with a room temperature inverse probe. The combination of simple sample preparation, rapid sample analysis, novel processing parameters, and easily interpreted results, makes this method an easily accessible tool for olive oil fraud detection by substitution or dilution compared to other methods already published.  相似文献   

13.
Thermal transitions of benzene in a hydrophobic polymer network have been explained by us in terms of the phase diagram of the polymer‐solvent system. In this work, we executed a similar study on copolymers and interpenetrating polymer networks (IPNs) with controllable hydrophilic/hydrophobic ratios. Copolymers and IPNs were swollen with different amounts of benzene and subjected to cooling and heating scans with differential scanning calorimetry (DSC). Synthesis of the IPNs was carried out in such a way that phase separation appeared, and three qualitatively different types of DSC thermograms were identified depending on the benzene content of IPN. Thermal transitions of benzene in the hydrophilic/hydrophobic copolymers can also be explained as a consequence of the phase diagram of the system, but an increase in the glass‐transition temperature of the system can be correlated with the interactions among the hydrophilic groups of the copolymer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1713–1721, 2003  相似文献   

14.
Fluorescence spectra measurement of olive oil and other vegetable oils   总被引:1,自引:0,他引:1  
Fluorescence spectra of some common vegetable oils, including olive oil, olive residue oil, refined olive oil, corn oil, soybean oil, sunflower oil, and cotton oil, were examined in their natural state, with a wavelength of 360 nm used as excitation radiation. All oils studied, except extra virgin olive oil, exhibited a strong fluorescence band at 430-450 nm. Extra virgin olive oil gave a different by interesting fluorescence spectrum, composed of 3 bands: one low intensity doublet at 440 and 455 nm, one strong at 525 nm, and one of medium intensity at 681 nm. The band at 681 nm was identified as the chlorophyll band. The band at 525 nm was at least partly derived from vitamin E. The low intensity doublet at 440 and 455 nm correlated with the absorption intensity at 232 and 270 nm of olive oil. The measurements of these fluorescence spectra were quick (about 5 min) and easy and could possibly be used for authentification of virgin olive oil.  相似文献   

15.
Maíra Fasciotti 《Talanta》2010,81(3):1116-4951
Triacylglycerols (TAGs) are the main constituents of vegetable oils where they occur in complex mixtures with characteristic distributions. Mass spectrometry using an atmospheric pressure chemical ionization interface (APCI-MS) run in positive mode and an Ion Trap mass analyser were applied in the study of olive and soybean oils and their mixtures. Direct injections of soybean and olive oil solutions allowed the identification of ions derived from the main TAGs of both oils. This procedure showed to be a simple and powerful tool to evaluate mixtures or addition of soybean to olive oil. TAG separation was optimized by high performance liquid chromatography (HPLC) using an octadecylsilica LiChrospher column (250 mm × 3 mm; 5 μm) and a gradient composed of acetonitrile and 2-propanol allowed the separation of the main TAGs of the studied oils. APCI vaporization temperature was optimized and best signals were obtained at 370 °C. Multiple reaction monitoring (MRM) employing the transition of the protonated TAG molecules ([M+H]+) to the protonated diacylglycerol fragments ([M+H−R]+) improved the selectivity of TAG detection and was used in quantitative studies. Different strategies were developed to evaluate oil composition following TAG analysis by MRM. The external standard calibration and standard additions methods were compared for triolein quantification but the former showed to be biased. Further quantitative studies were based on the estimates of soybean and olive oil proportions in mixtures by comparison of TAG areas found in mixtures of known and unknown composition of both oils. Good agreement with expected or labeled values was found for a commercial blend containing 15% (w/w) of olive oil in soybean oil and to a 1:1 mixture of both oils, showing the potential of this method in characterizing oil mixtures and estimating oil proportions. Olive oils of different origins were also evaluated by mass spectra data obtained after direct injections of oil solutions and principal component analysis (PCA). Argentinean olive oils were clustered in a different area of the principal components plot (PC2 × PC1) in comparison with European olive oils. The commercial blend containing 15% (w/w) of olive oil in soybean oil appeared in a completely different area of the graphic, showing the potential of this method to screen out for olive oil adulterations.  相似文献   

16.
Because of the health problems associated with trans fatty acids (TFAs) in hydrogenated oil, the objective of this research was to accelerate crystallization of the trans-free unhydrogenated palm oil (UPO) as a hydrogenated palm oil (HPO) substitute. Crystallization thermograms of UPO blended with icing sugar (1:1.5 mass ratio) from different initial heating temperatures were measured by differential scanning calorimetry (DSC), to study its effects on crystallization rate. DSC thermograms of UPO and HPO cooled from two melt states (the complete melting state 80 °C and the incomplete state 40 °C) were also compared. Crystallization rates from temperatures above the melting point (m.p.) were faster than those below the top limit of the m.p. The reason may be that a higher initial heating temperature induced a completely melted state and thus a larger driving force toward the solid phase. Raising the processing temperature to 80 °C, UPO may have a crystallization rate the same as, if not faster than, HPO. This study provides a new way to accelerate the crystallization of the trans-free UPO, making HPO a realistic substitute in the food industry.  相似文献   

17.
Thermal behavior of waxy oils is investigated using the techniques of thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). Model waxy oils and real waxy crude oils are utilized. Decomposition temperatures of waxy oils are obtained using TG analysis. The effects of thermal history, wax content, and additive on the gelation process of waxy oils are investigated using DSC. The DSC method provides a measure of wax solubility as well as solid fraction. An integration method and a computation method are utilized to predict solid fraction. In addition, wax crystallization onset points are obtained at the cooling rates ranging from 1 to 20 °C min?1. Similarly, wax dissolution endset points are obtained at heating rates ranging from 1 to 20 °C min?1. Extrapolated onset and endset points yield wax precipitation temperature and wax dissolution temperature, respectively. Subsequently, wax solubility curves are obtained using thermodynamic computations. A wax precipitation temperature method and a wax dissolution temperature method combine thermodynamic phase behavior with onset/endset points to predict solid fraction. Both the wax precipitation temperature method and the wax dissolution temperature method can predict solid fraction of waxy oil samples. The wax precipitation temperature method and the wax dissolution temperature method are accurate when the temperature is close to the wax appearance temperature. A heat-integration method provides accurate values of the solid fraction at temperatures significantly below the wax appearance temperature. Therefore, integration method and wax precipitation temperature/wax dissolution temperature method are combined to predict solid fraction. The effect of solid fraction on yield stress is also investigated using differential scanning calorimetry and rheometry. Finally, a new solid fraction dependent gel strength model is obtained for shut in and restart of waxy crude oil pipelines.  相似文献   

18.
A microscopic Fourier transform infrared spectrometer (Micro FTIR) equipped for differential scanning calorimetry (DSC) was used to measure simultaneously the chemical structural variation and the thermal response of phase transition of cholesteryl oleyl carbonate (COC). The differential scanning calorimeter served also to determine the phase transitions of COC during heating or cooling. Two endothermic features due to phase transition were found in the thermogram: 18. 3 °C for a smectic-cholesteric transition and 37.5 °C for a cholesteric-isotropic transition during heating; 35.1 °C for an isotropic-cholesteric transition and 15.8 °C for a cholesteric-smectic transition during cooling. The breadth of the feature indicated sluggish phase transitions. The three-dimensional plot indicated that the intensities of lines due to the C-H stretching and scissoring deformation modes and C=O stretching mode of COC decreased suddenly near the temperature of phase transition during heating but the intensity of the line dues to the C-O stretching mode of carbonate ester of COC increased. Lattice vibrations or coupling of vibrational modes might be responsible for the result. These intensities in the cooling process varied inversely to those in heating process.  相似文献   

19.
Solid-phase microextraction was used as a technique for headspace sampling of extra virgin olive oil and virgin olive oil samples with different off-flavours. A 100 microm coated polydimethylsiloxane fiber was used to extract volatile aldehydes, the sampling temperature was 45 degrees C and the fiber has been exposed to the headspace for 15 min. Nonanal and 2-decenal were present in all the olive oils with extraction off-flavours but were not in extra virgin olive oil sample.  相似文献   

20.
The freshness of virgin olive oils (VOO) from typical cultivars of Garda regions was evaluated by attenuated total reflectance (ATR) and Fourier transform infrared (FTIR) spectroscopy, in combination with multivariate analysis. The olive oil freshness decreased during storage mainly because of oxidation processes. In this research, 91 virgin olive oils were packaged in glass bottles and stored either in the light or in the dark at room temperature for different periods. The oils were analysed, before and after storage, using both chemical methods and spectroscopic technique.Classification strategies investigated were partial least square discriminant analysis (PLS-DA), linear discriminant analysis (LDA), and soft independent modelling of class analogy (SIMCA).The results show that ATR-MIR spectroscopy is an interesting technique compared with traditional chemical index in classifying olive oil samples stored in different conditions. In fact, the FTIR PCA results allowed a better discrimination among fresh and oxidized oils, than samples separation obtained by PCA applied to chemical data. Moreover, the results obtained by the different classification techniques (PLS-DA, LDA, SIMCA) evidenced the ability of FTIR spectra to evaluate the olive oil freshness. FTIR spectroscopy results are in agreement with classical methods. The spectroscopic technique could be applied for the prediction of VOOs freshness giving information related to chemical modifications. The great advantages of this technique, compared to chemical analysis, are related to rapidity, non-destructive characteristics and low cost per sample. In conclusion, ATR-MIR represents a reliable, cheap and fast classification tool able to assess the freshness of virgin olive oils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号