首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Treatment of 7-NH(2)Bu(t)-nido-7-CB(10)H(12) in tetrahydrofuran (THF) with LiBu(n)(3 equiv) and then [ReBr(CO)(3)(THF)(2)] gives the rhenacarborane dianion [1-NHBu(t)-2,2,2-(CO)(3)-closo-2,1-ReCB(10)H(10)](2-), isolated as the bis-[N(PPh(3))(2)](+) salt (4). Iodine oxidation of this Re(I) intermediate gives the Re(III) complex [1,2-mu-NHBu(t)-2,2,2-(CO)(3)-closo-2,1-ReCB(10)H(10)] 6 in which the carborane functions formally as an 8-electron (6pi+ 2sigma) donor. Reaction of with ligands L in the presence of Me(3)NO gives substituted products [1,2-mu-NHBu(t)-2,2-(CO)(2)-2-L-closo-2,1-ReCB(10)H(10)][L = PPh(3)(7a), CNXyl (7b; Xyl = C(6)H(3)Me(2)-2,6), or Bu(t)C triple bond CH (7c)]. Formation of complex 7c is unexpectedly accompanied by [1,2-mu-NHBu(t)-2,2-(CO)(2)-3,2-sigma:eta(2)-{C(=CHBu(t))-CH=CHBu(t)}-closo-2,1-ReCB(10)H(9)] 8a, in which an alkyne-derived dienyl group is bound to both the rhenium centre and to an adjacent boron vertex. Complex 8a is also obtained from 7c with Bu(t)C triple bond CH and Me(3)NO. The same reaction of 7c, using PhC triple bond CH or CNXyl instead of Bu(t)C triple bond CH, gives, respectively, [1,2-micro-NHBu(t)-2,2-(CO)(2)-3,2-sigma:eta(2)-{C(=CHBu(t))-CH=CHPh}-closo-2,1-ReCB(10)H(9)] 8b and [1,2-micro-NHBu(t)-2-Bu(t)C triple bond CH-2-CO-2-CNXyl-closo-2,1-ReCB(10)H(10)] 9. Addition of donors L to results in displacement from rhenium of the pendant dienyl moiety, yielding [1,2-mu-NHBu(t)-2,2-(CO)(2)-2-L-3-{C(=CHBu(t))-CH=CHBu(t)}-closo-2,1-ReCB(10)H(9)][L = PMe(3)(10a), CNBu(t)(10b)]. Single-crystal X-ray diffraction analyses have confirmed the novel structural features of compounds 6, 7c, 8b and 9.  相似文献   

2.
The reagent Li(2)[7-NMe(3)-nido-7-CB(10)H(10)] reacts with [Mo(CO)(3)(NCMe)(3)] in THF-NCMe (THF = tetrahydrofuran) to give a molybdenacarborane intermediate which, upon oxidation by CH(2)[double bond]CHCH(2)Br or I(2) and then addition of [N(PPh(3))(2)]Cl, gives the salts [N(PPh(3))(2)][2,2,2-(CO)(3)-2-X-3-NMe(3)-closo-2,1-MoCB(10)H(10)] (X = Br (1) or I (2)). During the reaction, the cage-bound NMe(3) substituent is transferred from the cage-carbon atom to an adjacent cage-boron atom, a feature established spectroscopically in 1 and 2, and by X-ray diffraction studies on several of their derivatives. When [Rh(NCMe)(3)(eta(5)-C(5)Me(5))][BF(4)](2) is used as the oxidizing agent, the trimetallic compound [2,2,2-(CO)(3)-7-mu-H-2,7,11-[Rh(2)(mu-CO)(eta(5)-C(5)Me(5))(2)]-closo-2,1-MoCB(10)H(9)] (10) is formed, the NMe(3) group being lost. Reaction of 1 in CH(2)Cl(2) with Tl[PF(6)] in the presence of donor ligands L affords neutral zwitterionic compounds [2,2,2-(CO)(3)-2-L-3-NMe(3)-closo-2,1-MoCB(10)H(10)] for L = PPh(3) (4) or CNBu(t) (5), and [2-Bu(t)C[triple bond]CH-2,2-(CO)(2)-3-NMe(3)-closo-2,1-MoCB(10)H(10)] (6) when L = Bu(t)C[triple bond]CH. When 1 is treated with CNBu(t) and X(2), the metal center is oxidized, and in the products obtained, [2,2,2,2-(CNBu(t))(4)-2-Br-3-X-closo-2,1-MoCB(10)H(10)] (X = Br (7), I (8)), the B-NMe(3) bond is replaced by B-X. In contrast, treatment of 2 with I(2) and cyclo-1,4-S(2)(CH(2))(4) in CH(2)Cl(2) results in oxidative substitution of the cluster and retention of the NMe(3) group, giving [2,2,2-(CO)(3)-2-I-3-NMe(3)-6-[cyclo-1,4-S(2)(CH(2))(4)]-closo-2,1-MoCB(10)H(9)] (9). The unique structural features of the new compounds were confirmed by single-crystal X-ray diffraction studies upon 6, 7, 9 and 10.  相似文献   

3.
The nickelacarboranes [NEt(4)][2-(eta(3)-C(3)H(4)R)-closo-2,1,7-NiC(2)B(9)H(11)] (R = H (1a), Ph (1b)) have been synthesized via reaction between [Na](2)[nido-7,9-C(2)B(9)H(11)] and [Ni(2)(micro-Br)(2)(eta(3)-C(3)H(4)R)(2)] in THF (THF = tetrahydrofuran), followed by addition of [NEt(4)]Cl. Protonation of 1a in the presence of a donor ligand L affords the complexes [2,2-L(2)-closo-2,1,7-NiC(2)B(9)H(11)] (L = CO (2), CNBu(t) (3)). Addition of PEt(3) (1 equiv) to 2 produces quantitative conversion to [2-CO-2-PEt(3)-closo-2,1,7-NiC(2)B(9)H(11)], 4. Species 2-4 exhibit in solution hindered rotation of the NiL(2) fragment with respect to the eta(5)-C(2)B(9) cage unit. Protonation of 1a in the presence of a diene affords the neutral complexes [2-(eta(2):eta(2)-diene)-closo-2,1,7-NiC(2)B(9)H(11)] (diene = C(5)Me(5)H (5), dcp (6), cod (7), nbd (8), chd (9), and cot (10a); dcp = dicyclopentadiene, cod = 1,5-cyclooctadiene, nbd = norbornadiene, chd = 1,3-cyclohexadiene, and cot = cyclooctatetraene). Variable temperature (1)H NMR experiments show that the [Ni(diene)] fragments are freely rotating even at 193 K. A small quantity of the di-cage species [2,2'-micro-(1,2:5,6-eta-3,4:7,8-eta-cot)-(closo-2,1,7-NiC(2)B(9)H(11))(2)] (10b) is formed as a coproduct in the synthesis of 10a. This species can be rationally synthesized by protonation of 1a and subsequent addition of 10a.  相似文献   

4.
Treatment of [RhCl(eta4-diene)]2 (diene = nbd, cod) with the N-heterocyclic ligands 2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), 1,10-phenanthroline (phen), and pyridine (py) followed by addition of Cs[arachno-6-SB9H12] affords the corresponding salts, [Rh(eta4-diene)(L2)][SB9H12] [diene = cod, L2 = bpy (1), Me2bpy (3), phen (5), (py)2 (7); diene = nbd, L2 = bpy (2), Me2bpy (4), phen (6), (py)2 (8)]. These compounds are characterized by NMR spectroscopy and mass spectrometry, and in addition, the cod-Rh species 1 and 3 are studied by X-ray diffraction analysis. These saltlike reagents are stable in the solid state, but in solution the rhodium(I) cations, [Rh(eta4-diene)(L2)]+, react with the polyhedral anion [SB9H12]- leading to a chemistry that is controlled by the d8 transition element chelates. The nbd-Rh(I) complexes react faster than the cod-Rh(I) counterparts, leading, depending on the conditions, to the synthesis of new rhodathiaboranes of general formulas [8,8-(L2)-nido-8,7-RhSB9H10] [L2 = bpy (9), Me2bpy (10), phen (11), (py)2 (12)] and [8,8-(L2)-8-(L')-nido-8,7-RhSB9H10] [L' = PPh3, L2 = bpy (13), Me2bpy (14), phen (15); L' = NCCH3, L2 = bpy (16), Me2bpy (17), phen (18)]. Compound 13 is characterized by X-ray diffraction analysis confirming the 11-vertex nido-structure of the rhodathiaborane analogues 14-18. In dichloromethane, 1 and 3 yield mixtures that contain the 11-vertex rhodathiaboranes 9 and 10 together with new species. In contrast, the cod-Rh(I) reagent 5 affords a single compound, which is proposed to be an organometallic rhodium complex bound exo-polyhedrally to the thiaborane cage. In the presence of H2(g) and stoichiometric amounts of PPh3, the cod-Rh(I) reagents, 1, 3, and 5, afford the salts [Rh(H)2(L2)(PPh3)2][SB9H12] [L2 = bpy (19), Me2bpy (20), phen (21)]. Similarly, in an atmosphere of CO(g) and in the presence of PPh3, compounds 1-6 afford [Rh(L2)(PPh3)2(CO)][SB9H12] (L2 = bpy (22), Me2bpy (23), phen (24)]. The structures of 19 and 24 are studied by X-ray diffraction analysis. The five-coordinate complexes [Rh(L2)(PPh3)2(CO)]+ undergo PPh3 exchange in a process that is characterized as dissociative. The observed differences in the reactivity of the nbd-Rh(I) salts versus the cod-Rh(I) analogues are rationalized on the basis of the higher kinetic lability of the nbd ligand and its faster hydrogenation relative to the cod diene.  相似文献   

5.
Treatment of the isomeric 12-vertex nickelacarbaborane salts [NEt(4)][3-(eta3)-C(3)H(5))-closo-3,1,2-NiC(2)B(9)H(11)] and [NEt(4)][2-(eta3)-C(3)H(5))-closo-2,1,7-NiC(2)B(9)H(11)] with [CuCl(PPh(3))](4) and Tl[PF(6)] affords the zwitterionic bimetallic species [3-(eta3)-C(3)H(5))-3,4,8-[Cu(PPh(3))]-4,8-(mu-H)(2)-closo-3,1,2-NiC(2)B(9)H(9)] and [2-(eta3)-C(3)H(5))-2,6,11-(Cu(PPh(3)))-6,11-(mu-H)(2)-closo-2,1,7-NiC(2)B(9)H(9)], respectively. Similarly, the 13-vertex nickelacarbaborane [NEt(4)][4-(eta3)-C(3)H(5))-closo-4,1,6-NiC(2)B(10)H(12)] reacts with sources of mono-cationic metal fragments to form [4-(eta3)-C(3)H(5))-7,8,13-(Cu(PPh(3)))-7,8,13-(mu-H)(3)-4,1,6-closo-NiC(2)B(10)H(9)], [4-(eta3)-C(3)H(5))-3,8-(Rh(PPh(3))(2))-3,8-(mu-H)(2)-4,1,6-closo-NiC(2)B(10)H(10)] and [4-(eta3)-C(3)H(5))-3,7,8-(RuCl(PPh(3))(2))-3,7,8-(mu-H)(3)-4,1,6-closo-NiC(2)B(10)H(9)]. The molecular structures of these five new bimetallic compounds were determined by X-ray diffraction studies, confirming that exopolyhedral Cu, Rh and Ru fragments are attached to the cluster via B-H[right harpoon up]M agostic-type interactions and, in the case of the (NiC(2)B(9)) species, by a metal-metal bond.  相似文献   

6.
Closo-to-arachno redox flexibility in metallaheteroboranes may be viewed as a metal-to-ligand cooperative action with application in catalysis. The treatment of [PSH][arachno-4-SB(8)H(11)] with [RhCl(PPh(3))(3)] affords, after chromatography, three new 10-vertex rhodathiaboranes, [2,2,2-(H)(PPh(3))(2)-closo-2,1-RhSB(8)H(8)] (3), [6,6,9-(PPh(3))(3)-arachno-6,5-RhSB(8)H(9)] (4) and [2,2,2-(Cl)(H)(PPh(3))-6-(PPh(3))-closo-2,1-RhSB(8)H(7)] (5). 3 reacts quantitatively with PPh(3) to form 4, which, in turn, reacts with chlorinated solvents to give the chloro-ligated cluster 5. Kinetic studies demonstrate that the reaction of 3 with PPh(3) obeys a second-order rate law, with an associative mechanism. The Lewis acidity of 3 is quite remarkable, and, given its closo-to-arachno structural and electronic response, this cluster is expected to exhibit a rich chemistry.  相似文献   

7.
Ultraviolet irradiation of [PPh(4)][closo-1-CB(8)H(9)] with [Re(2)(CO)(10)] in THF (tetrahydrofuran) at ambient temperature affords the dirhenacarborane anion [6,10-{Re(CO)(4)}-10-(micro-H)-6,6,6-(CO)(3)-closo-6,1-ReCB(8)H(8)]-, isolated as its [PPh(4)]+ salt (1). Further irradiation of 1 yields a second isomeric anion [6,10-{Re(CO)(4)}-6-(micro-H)-10,10,10-(CO)(3)-closo-10,1-ReCB(8)H(8)]- that was characterized as a [N(PPh(3))(2)]+ salt (2). Reaction of 1 with NOBF(4) produces the neutral dirhenacarborane compound [8,10-{Re(CO)(4)}-8,10-(micro-H)2-6,6-(CO)(2)-6-NO-closo-6,1-ReCB(8)H(7)] (3). Compounds 1-3 all consist of a central {closo-ReCB(8)} cluster with a second rhenium center which is exo-polyhedral. Attempts to substitute the carbonyl ligands of 3 with other donor ligands such as phosphines, isocyanides, or alkynes resulted in loss of the exo-polyhedral rhenium moiety and formation of a monorhenium anion, [6,6-(CO)(2)-6-NO-closo-6,1-ReCB(8)H(9)]-, isolated as its [N(PPh(3))(2)]+ salt (4). The heterometallic dimetallacarborane species, [6,7,10-{Cu(PPh(3))}-7,10-(micro-H)2-6,6-(CO)(2)-6-NO-closo-6,1-ReCB(8)H(7)] (5) and [6,7-{Au(PPh(3))}-7-(micro-H)-6,6-(CO)(2)-6-NO-closo-6,1-ReCB(8)H(8)] (6) were formed from reactions of 4 with {Cu(PPh(3))}+ and {Au(PPh(3))}+, respectively. Similarly, reaction of 4 with {Ir(CO)(PPh(3))(2)}+ afforded two products, [6,10-{Ir(micro-PPh(2))(Ph)(CO)(PPh(3))}-10-(micro-H)-6-CO-6-NO-closo-6,1-ReCB(8)H(8)] (7) and [6,9,10-{Ir(micro-PPh(2))(H)(PPh(3))}-9-(micro-H)-6-CO-6-NO-10-Ph-closo-6,1-ReCB(8)H(8)] (8). The solid-state structures of compounds 1-8 were all unequivocally established by single-crystal X-ray diffraction experiments.  相似文献   

8.
The compound [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)6}-closo-2,1-RuCB10H8] 1a reacts with PMe3 or PCy3(Cy = cyclo-C6H11) to give the structurally different species [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)5(PMe3)}-closo-2,1-RuCB10H8] 4 and [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(CO)5(PCy3)}-closo-2,1-RuCB10H8]5, respectively. A symmetrically disubstituted product [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)4(PMe3)2}-closo-2,1-RuCB10H8] 6 is obtained using an excess of PMe3. In contrast, the chelating diphosphines 1,1'-(PPh2)2-Fe(eta-C5H4)2 and 1,2-(PPh2)2-closo-1,2-C2B10H10 react with 1a to yield oxidative-insertion species [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(micro-[1',1'-(PPh2)2-Fe(eta-C5H4)2])(CO)4}-closo-2,1-RuCB10H8] 7 and [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(CO)4(1',2'-(PPh2)2-closo-1',2'-C2B10H10)}-closo-2,1-RuCB10H8] 8, respectively. In toluene at reflux temperatures, 1a with Bu(t)SSBu(t) gives [1-SMe2-2,2-(CO)2-7-(mu-SBu(t))-11-(mu-H)-2,7,11-{Ru2(mu-H)(mu-SBu(t))(CO)4}-closo-2,1-RuCB10H8] 9, and with Bu(t)C [triple bond] CH gives [1-SMe2-2,2-(CO)2-7-{mu:eta2-(E)-CH=C(H)Bu(t)}-11-{mu:eta2-(E)-CH=C(H)Bu(t)}-2,7,11-{Ru2(CO)5}-closo-2,1-RuCB10H8] 10. In the latter, two alkyne groups have inserted into cage B-H groups, with one of the resulting B-vinyl moieties involved in a C-H...Ru agostic bond. Oxidation of 1a with I2 or HgCl2 affords the mononuclear ruthenium complex [1-SMe2-2,2,2-(CO)3-closo-2,1-RuCB10H10] 11.  相似文献   

9.
The reagent [arachno-4-CB8H14] reacts with [Fe3(CO)12] in tetrahydrofuran (THF) at reflux temperatures, followed by addition of [N(PPh3)2]Cl, to afford [N(PPh3)2][4,9-{Fe(CO)4}-9,9,9-(CO)3-arachno-9,6-FeCB8H11] (3). In the anion of 3, one iron atom is part of the open CBBFeBB face of a 10-vertex {arachno-9,6-FeCB8} cage, to which the second iron atom is attached via an Fe-Fe bond and an additional exo-polyhedral Fe-B sigma bond. Upon heating 3 in refluxing toluene, the closed 10-vertex species [N(PPh3)2][2,2,2-(CO)3-closo-2,1-FeCB8H9] (4) is obtained, whereas the isomeric compound [N(PPh3)2][6,6,6-(CO)3-closo-6,1-FeCB8H9] (5) is isolated upon heating [closo-4-CB8H9]- and [Fe3(CO)12] in refluxing THF with subsequent addition of [N(PPh3)2]Cl. Protonation of 3 using CF3SO3H in CH2Cl2 gives the charge-compensated compound [4,9-{Fe(CO)4}-4-(mu-H)-9,9,9-(CO)3-arachno-9,6-FeCB8H11] (6), in which the B-Fe sigma bond of the precursor has been converted to a B-H right harpoon-up Fe linkage. In contrast, 3 with {M(PPh3)}+ gives the trimetallic species [1,3,4,9-{MFe(CO)4(PPh3)}-1,3-(mu-H)2-9,9,9-(CO)3-arachno-9,6-FeCB8H9] (M = Cu (7), Ag 8) in which the three metal centers form a V-shaped M-Fe-Fe unit. Compound 6 reacts with PEt3 in the presence of Me(3)NO to yield [4,9-(PEt3)2-9,9-(CO)2-nido-9,6-FeCB8H10] (9). In the latter, the formerly exo-polyhedral {Fe(CO)4} fragment has been replaced by a PEt3 ligand, with a second PEt3 substituting one CO group at the remaining cluster iron vertex. The novel structural features of compounds 3-9 have been confirmed by single-crystal X-ray diffraction studies.  相似文献   

10.
The monocarbon carborane [Cs][nido-7-CB(10)H(13)] reacts with the 16-electron [RuCl(2)(PPh(3))(3)] in a solution of benzene/methanol in the presence of N,N,N',N'-tetramethylnaphthalene-1,8-diamine as the base to give a series of 12-vertex monocarbon arene-biruthenacarborane complexes of two types: [closo-2-[7,11-exo-RuClPPh(3)(mu,eta(6)-C(6)H(5)PPh(2))]-7,11-(mu-H)(2)-2,1-RuCB(10)H(8)R] (5, R = H; 6, R = 6-MeO; 7, R = 3-MeO) and [closo-2-(eta(6)-C(6)H(6))-10,11,12-[exo-RuCl(PPh(3))(2)]-10,11,12-(mu-H)(3)-2,1-RuCB(10)H(7)R(1)] (8a, R(1) = 6-MeO; 8b, R(1) = 3-MeO, inseparable mixture of isomers) along with trace amounts of 10-vertex mononuclear hypercloso/isocloso-type complexes [2,2-(PPh(3))(2)-2-H-3,9-(MeO)(2)-2,1-RuCB(8)H(7)] (9) and [2,5-(Ph(3)P)-2-Cl-2-H-3,9-(MeO)(2)-2,1-RuCB(8)H(6)] (10). Binuclear ruthenacarborane clusters of both series were characterized by a combination of analytical and multinuclear NMR spectroscopic data and by single-crystal X-ray diffraction studies of three selected complexes, 6-8. In solution, isomers 8a,b have been shown to undergo the isomerization process through the scrambling of the exo-[RuCl(PPh(3))(2)] fragment about two adjacent triangular cage boron faces B(7)B(11)B(12) and B(8)B(9)B(12).  相似文献   

11.
In one synthetic step from the readily available 9-Me(2)SCH(2)-nido-7,8-C(2)B(9)H(11) (compound 1), the first representative of the eleven-vertex hypho family of tricarbaboranes, [2,5,12-C(3)B(8)H(15)][X] (X=[NMe4]+ or [PPh4]+) (compound 2), has been isolated in 32% yield and structurally characterised by single-crystal X-ray diffraction, multi-nuclear NMR spectroscopy, mass spectrometry, and computational methods. Both [NMe4]+ or [PPh4]+ salts of anion 2 were found to undergo degradative conversion to the [hypho-6,7-C(2)B(6)H(13)]- anion (anion 3) in alkaline medium. The [PPh4]+ salt of anion 2 converted quantitatively to the [6-CH3-arachno-5,10-C(2)B(8)H(12)]- anion (anion 4) if passed through a silica column or to the neutral 5-CH3-arachno-6,9-C(2)B(8)H(13) (compound 5) on treatment of its [NMe4]+ salt with dilute HCl. Moreover, the reaction of compound 2 with [RhCl2(C(5)Me(5))]2 afforded the eleven-vertex ruthenadicarbaborane [1-C(5)Me(5)-4-CH(3)-closo-1,2,3-RhC(2)B(8)H(9)] (compound 8). All these reactions resulted in an extrusion of one of the cluster carbon atoms into an exoskeletal position.  相似文献   

12.
A synthetic methodology using double carbonyl substitution of the starting tricarbonyl complex [3,3,3-(CO)(3)-closo-3,1,2-RuC(2)B(9)H(11)] (1) with 2 mol equiv of the reagent Me(3)NO has been employed to afford ruthenacarborane complexes with chelating N-donor ligands. Three of these complexes, [3-CO-3,3-[kappa(2)-4,4'-R(2)-2,2'-(NC(5)H(3))(2)]-closo-3,1,2-RuC(2)B(9)H(11)] (3a, R = H; 3b, R = (CH(2))(8)Me; 3c, R = Bu(t)), comprise 2,2'-bipyridyl ligands with hydrogen, n-nonyl, or t-butyl groups in the 4,4'-positions of the rings, respectively. Photophysical analysis revealed no substantial luminescent activity, but the complexes are electrochemically active, undergoing sequential (reversible and quasi-reversible) one-electron reductions, the second of which likely precipitating a ligand displacement. Cyclic voltammetry (CV) experiments revealed an irreversible one-electron oxidation (E(pa) approximately 0.9 V) in MeCN, on the other hand, followed by rapid CO substitution by the solvent and reversible secondary reduction (E(1/2) approximately 0.1 V). The primary redox couple became quasi-reversible in CH(2)Cl(2), and spectroelectrochemical analysis of complex 3c provided evidence of a closo --> isocloso structural modification upon oxidation. An analogue of these complexes employing the TMEDA (N,N,N',N'-tetramethylethylenediamine) ligand, [3-CO-3,3-[kappa(2)-Me(2)N(CH(2))(2)NMe(2)]-closo-3,1,2-RuC(2)B(9)H(11)] (4), was synthesized using the same methodology. Cyclic voltammetric measurements displayed a reversible metal-based one-electron oxidation whether in CH(2)Cl(2) or MeCN, with no indication of subsequent CO substitution or a similar closo --> isocloso adjustment. Complex 4 was unexpectedly weakly luminescent (lambda(em) = 360 nm) in THF (tetrahydrofuran) at ambient temperatures, demonstrating a more intense phosphorescent emission in MeTHF (2-methyltetrahydrofuran) glass at 77 K (lambda(em) = 450 nm, tau(450) = 0.77 ms). The X-ray crystallographic structures of complexes 3a and 4 are reported along with spectroscopic IR, NMR ((1)H, (13)C, (11)B), UV-vis absorption, EPR, and CV data.  相似文献   

13.
The generation of heterobimetallic complexes with two or three bridging sulfido ligands from mononuclear tris(sulfido) complex of tungsten [Et(4)N][(Me(2)Tp)WS(3)] (1; Me(2)Tp = hydridotris(3,5-dimethylpyrazol-1-yl)borate) and organometallic precursors is reported. Treatment of 1 with stoichiometric amounts of metal complexes such as [M(PPh(3))(4)] (M = Pt, Pd), [(PtMe(3))(4)(micro(3)-I)(4)], [M(cod)(PPh(3))(2)][PF(6)] (M = Ir, Rh; cod = 1,5-cyclooctadiene), [Rh(cod)(dppe)][PF(6)] (dppe = Ph(2)PCH(2)CH(2)PPh(2)), [CpIr(MeCN)(3)][PF(6)](2) (Cp = eta(5)-C(5)Me(5)), [CpRu(MeCN)(3)][PF(6)], and [M(CO)(3)(MeCN)(3)] (M = Mo, W) in MeCN or MeCN-THF at room temperature afforded either the doubly bridged complexes [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)M(PPh(3))] (M = Pt (3), Pd (4)), [(Me(2)Tp)W(=S)(micro-S)(2)M(cod)] (M = Ir, Rh (7)), [(Me(2)Tp)W(=S)(micro-S)(2)Rh(dppe)], [(Me(2)Tp)W(=S)(micro-S)(2)RuCp] (10), and [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)W(CO)(3)] (12) or the triply bridged complexes including [(Me(2)Tp)W(micro-S)(3)PtMe(3)] (5), [(Me(2)Tp)W(micro-S)(3)IrCp][PF(6)] (9), and [Et(4)N][(Me(2)Tp)W(micro-S)(3)Mo(CO)(3)] (11), depending on the nature of the incorporated metal fragment. The X-ray analyses have been undertaken to clarify the detailed structures of 3-5, 7, and 9-12.  相似文献   

14.
The nine-vertex ferracarborane salt [N(PPh3)2][7,7,7-(CO)3-closo-7,1-FeCB7H8] (1) reacts with an excess of [IrCl(CO)(PPh3)2] in the presence of Tl[PF6] to form, successively, the bimetallic species [7,7,9,9,9-(CO)5-7-PPh3-closo-7,9,1-IrFeCB6H7] (3), in which one {BH}- vertex has formally been subrogated by an {Ir(CO)2(PPh3)} unit, and the trimetallic complex [6,7,9-{Ir(CO)(PPh3)2}-7,9-(mu-H)2-7,9,9-(CO)3-7-PPh3-closo-7,9,1-IrFeCB6H6] (5), which contains an {FeIr2} triangle. The {FeIrCB6} core in 5 resembles that in 3 with, in addition, the Fe...Ir connectivity being spanned by an {Ir(CO)(PPh3)2} fragment and the consequent Fe-Ir and Ir-Ir bonds bridged by hydrido ligands. In contrast to the above, treatment of the 10-vertex diferracarborane salt [N(PPh3)2][6,6,6,10,10,10-(CO)6-closo-6,10, 1-Fe2CB7H8] (2) with the same reagents yields two very different, trimetallic complexes, namely [8,10-{Ir(mu-PPh2)(Ph)(CO)(PPh3)}-8-(mu-H)-6,6,6,10,10-( CO)5-closo-6,10,1-Fe2CB7H7] (6) and [6,7,10-{Fe(CO)3}-6-(mu-H)-6,10,10,10-(CO)4-6-PPh3-closo-6,10,1-IrFeCB7H7] (7). In 6, an exo-polyhedral {IrPh(CO)(PPh3)} moiety is attached to a {closo-6,10,1-Fe2CB7} framework via a PPh2-bridged Fe-Ir bond and a B-HIr agostic-type linkage, the iridium center formally having inserted into one P-Ph bond of a PPh3 unit. Complex 7 contains an {IrFeCB7} cluster core, with an exo-polyhedral {Fe(CO)3} moiety bridging a {BIrFe} triangular face and with an additional Ir-H-Fe bridge. However, this metal atom arrangement reveals that iridium and iron moieties have exchanged exo- and endo-polyhedral sites with respect to the 10-vertex metallacarborane. X-ray diffraction studies upon 3, 5, 6, and 7 confirmed their novel structural features; some preliminary reactivity studies upon these compounds are also reported.  相似文献   

15.
The structure of [PPh(3)(benzyl)][B(10)H(11)] was determined at -123 degrees C and 24 degrees C by single-crystal X-ray analyses. The B(10) core of [B(10)H(11)](-) is similar in shape to that of [B(10)H(10)](2)(-). The 11th H atom asymmetrically caps a polar face of the cluster and shows no tendency for disorder in the solid state. Variable temperature multinuclear NMR studies shed light on the dynamic nature of [B(10)H(11)](-) in solution. In addition to the fluxionality of the cluster H atoms, the boron cage is fluxional at moderate temperatures, in contrast to [B(10)H(10)](2)(-). Multiple exchange processes are believed to take place as a function of temperature. Results of ab initio calculations are presented. Crystal data: [PPh(3)(benzyl)][B(10)H(11)] at -123 degrees C, P2(1)/c, a = 9.988(2) A, b = 18.860(2) A, c = 15.072(2) A, beta = 107.916(8) degrees, V = 2701.5(7) A(3), Z = 4; [PPh(3)(benzyl)][B(10)H(11)] at 24 degrees C, P2(1)/c, a = 10.067(5) A, b = 19.009(9) A, c = 15.247(7) A, beta = 107.952(9) degrees, V = 2775(2) A(3), Z = 4.  相似文献   

16.
The octahedral Ru(II) amine complexes [TpRu(L)(L')(NH(2)R)][OTf] (L = L' = PMe(3), P(OMe)(3) or L = CO and L' = PPh(3); R = H or (t)Bu) have been synthesized and characterized. Deprotonation of the amine complexes [TpRu(L)(L')(NH(3))][OTf] or [TpRu(PMe(3))(2)(NH(2)(t)Bu)][OTf] yields the Ru(II) amido complexes TpRu(L)(L')(NH(2)) and TpRu(PMe(3))(2)(NH(t)Bu). Reactions of the parent amido complexes or TpRu(PMe(3))(2)(NH(t)Bu) with phenylacetylene at room temperature result in immediate deprotonation to form ruthenium-amine/phenylacetylide ion pairs, and heating a benzene solution of the [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] ion pair results in the formation of the Ru(II) phenylacetylide complex TpRu(PMe(3))(2)(C[triple bond]CPh) in >90% yield. The observation that [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] converts to the Ru(II) acetylide with good yield while heating the ion pairs [TpRu(L)(L')(NH(3))][PhC(2)] yields multiple products is attributed to reluctant dissociation of ammonia compared with the (t)butylamine ligand (i.e., different rates for acetylide/amine exchange). These results are consistent with ligand exchange reactions of Ru(II) amine complexes [TpRu(PMe(3))(2)(NH(2)R)][OTf] (R = H or (t)Bu) with acetonitrile. The previously reported phenyl amido complexes TpRuL(2)(NHPh) [L = PMe(3) or P(OMe)(3)] react with 10 equiv of phenylacetylene at elevated temperature to produce Ru(II) acetylide complexes TpRuL(2)(C[triple bond]CPh) in quantitative yields. Kinetic studies indicate that the reaction of TpRu(PMe(3))(2)(NHPh) with phenylacetylene occurs via a pathway that involves TpRu(PMe(3))(2)(OTf) or [TpRu(PMe(3))(2)(NH(2)Ph)][OTf] as catalyst. Reactions of 1,4-cyclohexadiene with the Ru(II) amido complexes TpRu(L)(L')(NH(2)) (L = L' = PMe(3) or L = CO and L' = PPh(3)) or TpRu(PMe(3))(2)(NH(t)Bu) at elevated temperatures result in the formation of benzene and Ru hydride complexes. TpRu(PMe(3))(2)(H), [Tp(PMe(3))(2)Ru[double bond]C[double bond]C(H)Ph][OTf], [Tp(PMe(3))(2)Ru=C(CH(2)Ph)[N(H)Ph]][OTf], and [TpRu(PMe(3))(3)][OTf] have been independently prepared and characterized. Results from solid-state X-ray diffraction studies of the complexes [TpRu(CO)(PPh(3))(NH(3))][OTf], [TpRu(PMe(3))(2)(NH(3))][OTf], and TpRu(CO)(PPh(3))(C[triple bond]CPh) are reported.  相似文献   

17.
The ferracarborane [N(PPh3)2][6,6,6,10,10,10-(CO)6-closo-6,10,1-Fe2CB7H8] reacts in CH2Cl2 with 3 molar equivalents of Ag[PF6] to yield the trifluoro-substituted species [N(PPh3)2][7,8,9-F3-6,6,6,10,10,10-(CO)6-closo-6,10,1-Fe2CB7H5]. Compound undergoes structural rearrangement in toluene at reflux temperatures, forming [N(PPh3)2][8,9,10-F3-6,6,6,7,7,7-(CO)6-closo-6,7,1-Fe2CB7H5]. Alternatively, reaction of either or with a 10-fold excess of Ag[PF6] in CH2Cl2 forms two species: namely, [N(PPh3)2][2,7,9,10-F4-6,6,6,8,8,8-(CO)6-closo-6,8,1-Fe2CB7H4], in which one further B-F substitution has occurred and the {Fe2CB7} cluster core has rearranged, plus a mono-iron co-product, [N(PPh3)2][3,8,9-F3-7,7,7-(CO)3-closo-7,1-FeCB7H5] that is formed by polyhedral contraction. Treatment of with [NO][BF4] in CH2Cl2 results in CO substitution at the 4-connected iron vertex [Fe10], producing the zwitterionic complex [7,8,9-F3-6,6,6,10,10-(CO)5-10-NO-closo-6,10,1-Fe2CB7H5]. Addition of Me3NO to a mixture of and PEt3 in CH2Cl2 also results in CO substitution, forming the isomeric species [N(PPh3)2][7,8,9-F3-6,6,m,10,10-(CO)5-n-PEt3-closo-6,10,1-Fe2CB7H5] [m=6, n=10; m=10, n=6] in a 5:1 ratio. Treatment of with [NO][BF4] and then CNBut in CH2Cl2 allows further, successive CO substitution at Fe10 to yield first a neutral, zwitterionic complex [7,8,9-F3-6,6,6,10-(CO)4-10-NO-10-PEt3-closo-6,10,1-Fe2CB7H5] and then [7,8,9-F3-6,6,6-(CO)3-10-CNBut-10-NO-10-PEt3-closo-6,10,1-Fe2CB7H5]. The molecular structures of compounds and have been established by X-ray diffraction.  相似文献   

18.
The dialkylcyanamide complexes cis-[PtCl(NCNR(2))(PPh(3))(2)][BF(4)] 1 and cis-[Pt(NCNR(2))(2)(PPh(3))(2)][BF(4)](2) 2 (R = Me or Et) have been prepared by treatment of a CH(2)Cl(2) solution of cis-[PtCl(2)(PPh(3))(2)] with the appropriate dialkylcyanamide and one or two equivalents of Ag[BF(4)], respectively. Compounds 2 can also be obtained from 1 by a similar procedure. Their reaction with oximes, HON=CR'R' ' (R'R' ' = Me(2) or C(4)H(8)), in CH(2)Cl(2) and in the presence of Ag[BF(4)] or Cu(CH(3)COO)(2), leads to the novel type of azametallacycles cis-[Pt(NH=C(ON=CR'R")-NR2)(PPh3)2][BF4]2 4 upon an unprecedented coupling of the organocyanamides with oximes, in a process that proceeds via the mixed oxime-organocyanamide species cis-[Pt(NCNR(2))(HON=CR'R' ')(PPh(3))(2)][BF(4)](2) 3, and is catalyzed by either Ag(+) or Cu(2+) which activate the ligating organocyanamide by Lewis acid addition to the amide group. In contrast, in the organonitrile complexes cis-[Pt(NCR)(2)(PPh(3))(2)][BF(4)](2) 5 (R = C(6)H(4)OMe-4 or Et), obtained in a similar way as 2 (but by using NCR instead of the cyanamide), the ligating NCR is not activated by the Lewis acid and does not couple with the oximes. The spectroscopic properties of those complexes are reported along with the molecular structures of 2b (R = Et), 4a1 (R = Me, R'R' ' = Me(2)), and 4b1 (R = Et, R'R' ' = Me(2)), as established by X-ray crystallography which indicates that in the former complex the amide-N-atoms are trigonal planar, whereas in the latter (4a1 and 4b1) the five-membered rings are planar with a localized N=C double bond (imine group derived from the cyanamide) and the exocyclic amide and alkylidene groups (in 4b1) are involved in two intramolecular H-bonds to the oxygen atom of the ring.  相似文献   

19.
A series of primary phosphine homoleptic complexes [ML(4)](n)()(+)X(n)() (1, M = Ni, n = 0; 2, M = Pd, n = 2, X = BF(4); 3, M = Cu, n = 1, X = PF(6); 4, M = Ag, n = 1, X = BF(4); L = PH(2)Mes, Mes = 2,4,6-Me(3)C(6)H(2)] was prepared from mesitylphosphine and Ni(COD)(2), [Pd(NCMe)(4)][BF(4)](2), [Cu(NCMe)(4)]PF(6), and AgBF(4), respectively. Reactions of 1-4 with MeC(CH(2)PPh(2))(3) (triphos) or [P(CH(2)CH(2)PPh(2))(3)] (tetraphos) afforded the derivatives [M(L')L](n)()(+)X(n)() (L' = triphos; 6, M = Ni, n = 0; 7, M = Cu, n = 1, X = PF(6); 8, M = Ag, n = 1, X = BF(4); L' = tetraphos; 9, M = Pd, n = 2, X = BF(4)). Addition of NOBF(4) to 1 yielded the nitrosyl compound [NiL(3)(NO)]BF(4), 5. The solution structure and dynamics of 1-9 were studied by (31)P NMR spectroscopy (including the first reported analyses of a 12-spin system for 1-2). Complexes 1, 3, 6, and 7.solvent were characterized crystallographically. The structural and spectroscopic studies suggest that the coordination properties of L are dominated by its relatively small cone angle and that the basicity of L is comparable to that of more commonly used tertiary phosphines.  相似文献   

20.
Ketimino(phosphino)gold(I) complexes of the type [Au[NR=C(Me)R']L]X (X = ClO4, R = H, L = PPh3, R'=Me (la), Et (2a); L=PAr3 (Ar=C6H4OMe-4), R'=Me (1b), Et (2b); L=PPh3, R=R'=Me (3); X= CF3SO3 (OTf), L=PPh3, R=R'=Me (3'); R=Ar, R'=Me (4)) have been prepared from [Au(acac)L] (acac = acetyl acetonate) and ammonium salts [RNH3]X dissolved in the appropriate ketone MeC(O)R'. Complexes [Au(NH=CMe2)2]X (X = C1O4 (6), OTf (6')) were obtained from solutions of [Au(NH3)2]X in acetone. The reaction of 6 with PPN[AuCl2] or with PhICl2 gave [AuCl(NH=CMe2)] (7) or [AuCI2(NH=CMe2)2]ClO4 (8), respectively. Complex 7 was oxidized with PhICl2 to give [AuCl3(NH=CMe2)] (9). The reaction of [AuCl(tht)] (tht = tetrahydrothiophene), NaClO4, and ammonia in acetone gave [Au(acetonine)2]ClO4 (10) (acetonine = 2,2,4,4,6-pentamethyl-2,3,4,5-tetrahydropyrimidine) which reacted with PPh3 or with PPN[AuCl2] to give [Au(PPh3)(acetonine)]ClO4 (11) or [AuCl(acetonine)] (12), respectively. Complex 11 reacts with [Au(PPh3)(Me2CO)]ClO4 to give [(AuPPh3)2(mu-acetonine)](ClO4)2 (13). The reaction of AgClO4 with acetonine gave [Ag(acetonine)(OClO3)] (14). The crystal structures of [Au(NH2Ar)(PPh3)]OTf (5), 6' and 10 have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号