首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present paper concerns the influence of the magnetic field on the permeability of a membrane of solid cylindrical particles covered with porous layer. Here, we have considered the flow along the axis of cylinder and the alignment of uniform magnetic field is assumed to be perpendicular to the axis. The Brinkman equation is used for flow through porous region and Stokes equation is used for flow through clear fluid region. To model flow through assemblage of particles, cell model technique has been used i.e. the porous cylindrical shell is assumed to be confined within a hypothetical cell of same geometry. The stress jump condition has been employed at the fluid-porous interface and all four alternative conditions Happel, Kuwabara, Kvashnin and Mehta-Morse/Cunningham are used at the hypothetical cell. Effect of the Hartmann number on the hydrodynamic permeability of the membrane is discussed.  相似文献   

2.
Core-shell Fe@Fe(3)O(4) nanoparticles exhibit substantial exchange bias at low temperatures, mediated by unidirectionally aligned moments at the core-shell interface. These spins are frozen into magnetic alignment with field cooling, and are depinned in a temperature-dependent manner. The population of such frozen spins has a direct impact on both coercivity (H(C)) and the exchange-bias field (H(E)), which are modulated by external physical parameters such as the strength of the applied cooling field and the cycling history of magnetic field sweeps (training effect). Aging of the core-shell nanoparticles under ambient conditions results in a gradual decrease in magnetization but overall retention of H(C) and H(E), as well as a large increase in the population of frozen spins. These changes are accompanied by a structural evolution from well-defined core-shell structures to particles containing multiple voids, attributable to the Kirkendall effect. Energy-filtered and high-resolution transmission electron microscopy both indicate further oxidation of the shell layer, but the Fe core is remarkably well preserved. The increase in frozen spin population with age is responsible for the overall retention of exchange bias, despite void formation and other oxidation-dependent changes. The exchange-bias field becomes negligible upon deliberate oxidation of Fe@Fe(3)O(4) nanoparticles into yolk-shell particles, with a nearly complete physical separation of core and shell.  相似文献   

3.
Rhodamine B was intercalated in interlayer spaces of Somasif Me-100, a synthetic mica, and the obtained rhodamine B/Somasif hybrid was suspended in a UV-curable resin precursor. Then, the suspension was subjected to an applied rotating magnetic field to align the hybrid particles, followed by solidification of the medium by UV irradiation to fix the alignment. The hybrid particles were aligned so that the Somasif layer lay perpendicular to the axis of rotation of the applied rotating magnetic field. UV/vis measurement indicated that the transition moment of xanthene ring of rhodamine B lay inclined to the layer of Somasif.  相似文献   

4.
In this paper we investigate the adsorption of magnetic particles onto magnetically patterned substrates. We find that the adsorption process is cooperative, where the probability of adsorption decreases with increasing substrate occupancy (namely, density of adsorbed particles). The effect of cooperativity can be accounted for by a simple modification of the adsorption probability as manifested by the binomial distribution. The negative cooperativity found in the magnetic particle adsorption is not due to direct repulsion between particles, but to screening of the surface's magnetic field by previously adsorbed particles. Thus, the adsorption of magnetic colloids on magnetic substrates is a self-limiting process.  相似文献   

5.
The behavior of micrometer-sized weak magnetic insulating particles migrating in a conductive liquid metal is of broad interest during strong magnetic field processing of materials. In the present paper, we develop a numerical method to investigate the solid-liquid and particle-particle interactions by using a computational fluid dynamics (CFDs) modeling. By applying a strong magnetic field, for example, 10 Tesla, the drag forces of a single spherical particle can be increased up to around 15% at a creeping flow limit. However, magnetic field effects are reduced when the Reynolds number becomes higher. For two identical particles migrating along their centerline in a conductive liquid, both the drag forces and the magnetic interaction will be influenced. Factors such as interparticle distance, Reynolds number and magnetic flux density are investigated. Shielding effects are found from the leading particle, which will subsequently induce a hydrodynamic interaction between two particles. Strong magnetic fields however do not appear to have a significant influence on the shielding effects. In addition, the magnetic interaction forces of magnetic dipole-dipole interaction and induced magneto-hydrodynamic interaction are considered. It can be found that the induced magneto-hydrodynamic interaction force highly depends on the flow field and magnetic flux density. Therefore, the interaction between insulating particles can be controlled by applying a strong magnetic field and modifying the flow field. The present research provides a better understanding of the magnetic field induced interaction during liquid metal processing, and a method of non-metallic particles manipulation for metal/ceramic based materials preparation may be proposed.  相似文献   

6.
The combination of polymers with magnetic particles displays novel and often enhanced properties compared to the traditional materials. They can open up possibilities for new technological applications. The magnetic field sensitive elastomers represent a new type of composites consisting of small particles, usually from nanometer range to micron range, dispersed in a highly elastic polymeric matrix. In this paper, we show that in the presence of built‐in magnetic particles it is possible to tune the elastic modulus by an external magnetic field. We propose a phenomenological equation to describe the effect of the external magnetic field on the elastic modulus. We demonstrate the engineering potential of new materials on the examples of two devices. The first one is a new type of seals fundamentally different from those used before. In the simplest case, the sealing assembly includes a magnetoelastic strip and a permanent magnet. They attract due to the magnetic forces. This ensures that due to high elasticity of the proposed composites and good adhesion properties, the strip of magnetoelastic will adopt the shape of the surface to be sealed, this fact leading to an excellent sealing. Another straightforward application of the magnetic composites is based on their magnetic field dependent elastic modulus. Namely, we demonstrate in this paper the possible application of these materials as adjustable vibration dampers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we theoretically show that the field-free molecular alignment can be controlled by shaping the femtosecond laser pulse with a periodic phase step modulation, involving the maximum degree and temporal structure of the molecular alignment. We show that the molecular alignment can be completely suppressed or reconstructed as that by the transform-limited laser pulse, the temporal structure of the alignment transient can be controlled with a desired shape, and the molecular alignment and antialignment for any temporal structure can be switched. Furthermore, we also show that both the degree and direction of the molecular alignment at a fix time delay can be continuously modulated.  相似文献   

8.
Microtubule particles and metal-coated microtubules were dispersed in various host liquid crystal mixtures. Dispersion effects were evaluated as a function of liquid crystal type, viscosity, dielectric anisotropy and surface interaction. Experimental results indicated that all the types of liquid crystals studied were aligned perpendicular to the microtubule surfaces, regardless of liquid crystal composition or various surface coatings used on the metal-coated microtubules. Low concentrations of the metal-coated microtubules in nematic liquid crystal hosts were aligned by flow or cell surface alignment conditions, and could be modulated by electric or magnetic fields. We observed better microtubules dispersion uniformity in high viscosity liquid crystal host mixtures and in liquid crystal-monomers than in isotropic fluids. Microtubules particles dispersed in ROTN-404 liquid crystal mixture had a much higher birefringence in the microwave region than dispersion in a paraffin oil.  相似文献   

9.
We have investigated the aggregate structures of a colloidal dispersion composed of ferromagnetic disk-like particles with a magnetic moment normal to the particle axis at the particle center, by means of 3D Monte Carlo simulations. Such disk-like particles have been modeled as a circular disk-like particle with the side section shape of spherocylinder. We have attempted to clarify the influences of the magnetic field strength, magnetic interactions between particles and volumetric fraction of particles. In order to discuss quantitatively the aggregate structures of clusters, we have focused on the radial distribution and orientational pair correlation functions, etc. For no applied magnetic field cases, long column-like clusters come to be formed with increasing magnetic particle–particle interactions. The internal structures of these clusters clearly show that the particles incline in a certain direction and their magnetic moments alternate in direction between the neighboring particles in the clusters. For applied magnetic field cases, the magnetic moment of each particle inclines in the magnetic field direction and therefore the column-like clusters are not formed straightforwardly. If the magnetic field is much stronger than magnetic particle–particle interactions, the particles do not have a tendency to form the clusters. As the influence of magnetic particle–particle interactions is significantly strong, thick chain-like clusters or column-like clusters or brick-wall-like clusters come to be formed along the magnetic field direction.  相似文献   

10.
Macroscopic compass-like magnetic alignment at low magnetic fields is natural for ferromagnetic materials but is seldomly observed in paramagnetic materials. Herein, we report a “paramagnetic compass” that magnetically aligns under ∼mT fields based on the single-crystalline framework constructed by lanthanide ions and organic ligands (Ln-MOF). The magnetic alignment is attributed to the Ln-MOF's strong macroscopic anisotropy, where the highly-ordered structure allows the Ln-ions’ molecular anisotropy to be summed according to the crystal symmetry. In tetragonal Ln-MOFs, the alignment is either parallel or perpendicular to the field depending on the easiest axis of the molecular anisotropy. Reversible switching between the two alignments is realized upon the removal and re-adsorption of solvent molecules filled in the framework. When the crystal symmetry is lowered in monoclinic Ln-MOFs, the alignments become even inclined (47°-66°) to the field. These fascinating properties of Ln-MOFs would encourage further explorations of framework materials containing paramagnetic centers.  相似文献   

11.
Abstract

Microtubule particles and metal-coated microtubules were dispersed in various host liquid crystal mixtures. Dispersion effects were evaluated as a function of liquid crystal type, viscosity, dielectric anisotropy and surface interaction. Experimental results indicated that all the types of liquid crystals studied were aligned perpendicular to the microtubule surfaces, regardless of liquid crystal composition or various surface coatings used on the metal-coated microtubules. Low concentrations of the metal-coated microtubules in nematic liquid crystal hosts were aligned by flow or cell surface alignment conditions, and could be modulated by electric or magnetic fields. We observed better microtubules dispersion uniformity in high viscosity liquid crystal host mixtures and in liquid crystal-monomers than in isotropic fluids. Microtubules particles dispersed in ROTN-404 liquid crystal mixture had a much higher birefringence in the microwave region than dispersion in a paraffin oil.  相似文献   

12.
Block copolymers (BCPs) offer an exciting range of structures and functions that are of potential utility in existing as well as emerging technologies. Although this is generally acknowledged, with few exceptions, viable strategies for establishing scalable and robust control of BCP microstructure are underdeveloped. Magnetic field alignment offers great potential in this regard. The physics bears much in common with electric field alignment, but the absence of dielectric breakdown concerns and the more flexible, space pervasive nature of magnetic fields make it possible to design processes for high‐throughput fabrication of well‐ordered films with appropriate materials. In this perspective, we highlight the use of magnetic fields for control of microstructure in BCPs as well as polymer nanocomposites involving anisotropic nanomaterials. A brief review of efforts to date is given. Open questions related to field‐polymer interactions and future directions for magnetic alignment of these systems are discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

13.
In this paper we describe the magnetorheological (MR) behavior of aqueous suspensions consisting of magnetite particles stabilized by poly(acrylic acid) polymers (PAA). A previous work on the colloidal stability of the same systems for different pH values and polymer concentrations demonstrated that the addition of PAA polymers has a very significant effect on the stability. In the present contribution, we study the MR effect of the suspensions stabilized by two different commercial polymers, as a function of pH, magnetic field strength and magnetite volume fraction. All the results are discussed in terms of the interfacial properties of the systems. It is demonstrated that for a given concentration of micrometer particles, the rheological response strongly depends on pH, on the volume fraction of magnetite particles, on the type of polymer added for increasing the stability and on the magnetic field strength. Changing the polymer used provokes clear rheological differences for the same sample conditions (field strength, volume fraction and pH). This is suggested to be due to the hydrophobic/hydrophilic balance of the polymer affecting the magnetic field ability to form magnetic structures by aggregation of the magnetized particles. The results are compared to the predictions of the so-called standard chain model, based on the assumption that the MR effect is the result of the balance between the magnetic interactions (tending to establish some degree of order in the suspension by formation of particle chains in the direction of the field) and hydrodynamic ones (tending to destroy the formed structures by viscous stress on the chains). It is found that the behavior of the yield stress does not agree well with the predictions of the model when the relative proportion of both particle and polymer confers optimum stability to the dispersions. This is likely due to the fact that the presence of the stabilizing polyelectrolyte provokes that the magnetic field is not as effective in structuring the suspension as deduced from the chain model.  相似文献   

14.
A constitutive model for dispersions of acicular magnetic particles has been developed by modeling the particles as rigid dumbbells dispersed in a solvent. The effects of Brownian motion, anisotropic hydrodynamic drag, a steric force in the form of the Maier-Saupe potential, and, most importantly, a mean-field magnetic potential are included in the model. The development is similar to previous models for liquid-crystalline polymers. The model predicts multiple orientational states for the dispersion, and this phase behavior is described in terms of an orientational order parameter S and an average alignment parameter J; the latter is introduced because the magnetic particles have distinguishable direction due to polarity. A transition from isotropic to nematic phases at equilibrium is predicted. Multiple nematic phases-both prolate and oblate-are predicted in the presence of steady shear flow and external magnetic field parallel to the flow. The effect of increasing magnetic interparticle interactions and particle concentration is also presented. Comparisons with experimental data for the steady shear viscosity show very good agreement.  相似文献   

15.
The field-induced alignment of a smectic-A phase is, in principle, a complicated process involving the director rotation via the interaction with the field and the layer rotation via the molecular interactions. Time-resolved nuclear magnetic resonance spectroscopy has revealed this complexity in the case of the director alignment, but provides no direct information on the motion of the layers. Here we describe a time-resolved x-ray diffraction experiment using synchrotron radiation to solve the challenging problem of capturing the diffraction pattern on a time scale which is fast in comparison with that for the alignment of the smectic layers. We have investigated the alignment of the smectic-A phase of 4-octyl-4(')-cyanobiphenyl by a magnetic field. The experiment consists of creating a monodomain sample of the smectic-A phase by slow cooling from the nematic phase in a magnetic field with a flux density of 7 T. The sample is then turned quickly through an angle phi(0) about an axis parallel to the x-ray beam direction but orthogonal to the field. A sequence of two-dimensional small angle x-ray diffraction patterns are then collected at short time intervals. Experiments were carried out for different values of phi(0), and at different temperatures. The results show that the alignment behavior changes fundamentally when phi(0) exceeds 45 degrees, and that there is a sharp change in the alignment process when the temperature is less than 3 degrees C below the smectic-A-nematic transition. The results of the x-ray experiments are in broad agreement with the NMR results, but reveal major phenomena concerning the maintenance of the integrity of the smectic-A layer structure during the alignment process.  相似文献   

16.
We have analyzed the orientational distributions and rheological properties of a nondilute colloidal dispersion composed of ferromagnetic spherocylinder particles subjected to a simple shear flow. In order to understand the effects of the magnetic interactions between the particles, we have applied the mean-field theory to a nondilute colloidal dispersion for the two typical external magnetic field directions, that is, the direction parallel to the shear flow and the direction parallel to the angular velocity vector of the shear flow. The main results are summarized as follows. The particle-particle interactions suppress the Brownian motion of the particles and, therefore, make the particles incline toward the same direction. For the magnetic direction parallel to the shear flow, the influence of the particle-particle interactions makes the peak of the orientational distribution sharper and higher. The viscosity generally increases as the interactions between particles become stronger in the case where the effects of the shear flow and magnetic field are relatively small. For the magnetic direction parallel to the angular velocity vector of the shear flow, the influence of the particle-particle interactions on the orientational distribution appears significantly, when the influences of the shear flow and magnetic field are not so strong that the particles can be aligned sufficiently to form stable chainlike clusters in a certain direction.  相似文献   

17.
In this paper, we present a reproducible method for the preparation of mixed colloidal nanoparticles, consisting of a magnetic Fe3O4 nanoparticle nucleus and a biocompatible self-assembly shell of substitution of sodium carboxy methyl cellulose and chitosan in different degree. The heterogeneous structure of the particles can confer them both the possibility of being used as drug delivery systems and the responsiveness to external magnetic fields, allowing a selective guidance of drug molecules to specific target tissues without a concurrent increase in its level in healthy tissues. The preparation method is based on a coordination and layers by layers self-assembly process. In order to specify that A complete physicochemical characterization of the composite particles is carried out, in order to use this preliminary investigation to show that the CMC/CS shell efficiently coating Fe3O4 nanoparticles, and leading to composite particles, the magnetic behavior of the core/shell particles is similar to that of bare magnetic Fe3O4 nanoparticles. It is observed that The magnetic microspheres with CMC DS 1.05 served as shell show the best dispersion, super paramagnetic, the range of magnetic field the particles can respond is an order of magnitude higher than others, and the specific saturation magnetization intensity is the highest. Thus we can indicate with the conclusion that if the DS of CMC becomes higher, the Fe3O4@CS/CMC would be more sensitive with the extant magnetic field. However, when the DS of CMC is higher than 1.1, the specific saturation magnetization intensity of magnetic microspheres would fall down again and the geometry becomes not well. Therefore, when the DS of CMC stay in 1.05, it would be a better material of magnetic microsphere.  相似文献   

18.
Application of magnetic field on the separation and analysis of nano/microparticles is a growing subject in analytical separation chemistry. The migration phenomenon of a particle under inhomogeneous magnetic field is called magnetophoresis. The migration velocity depends on the magnetic susceptibility and the size of a particle. Therefore, magnetophoresis allows us to determine the magnetic susceptibility of particles, and to separate particles based on the magnetic properties. Magnetic separation of ferromagnetic particles in liquid has been utilized for a long time. For example, a high gradient magnetic separation under the non-uniform magnetic field generated by ferromagnetic mesh has been utilized in a wide region from chemical industry to bioscience. Recent progress on magnetic nanoparticles and microfluidic devices has made it possible to extend the range of application. Furthermore, it has been demonstrated that the very sensitive measurement of the magnetic susceptibility of microparticles can be performed by observing magnetophoretic velocity. In this review, we mainly introduce novel separation and detection methods based on magnetophoresis, which have been invented in this decade, and then new principles of particle migration under magnetic field are presented.  相似文献   

19.
Aligned carbon nanotubes (CNTs) composites can be prepared by post-growth alignment or through the use of CNT bundles. Post-growth alignment requires stringent processing conditions (high-voltage electric field/high-strength magnetic field). In this study, we focused on well-aligned multi-walled CNT bundles (AMWNTs). Achieving a balance between dispersion and required orientation was the main aim of this study. Ultrasonic dispersion will inevitably produce heat, which will adversely affect dispersion. Hence, we developed and attached a temperature-control system to a water bath ultrasonic dispersion device. Further, we studied effects of additional factors such as the type and amount of surfactant on dispersion.  相似文献   

20.
In this paper we report results of both, material preparation and magnetic characterisation, on CoFe2O4 particles of nanometric size formed by in‐situ precipitation within polymer gels. The size of the particles was controlled within a very narrow volume distribution and its average value was shifted from 2 to 10 nm. The existence of nanoparticles showing, at room temperature, coercive field values between 500 and 900 Oe and saturation magnetisations of about 500 emu/cm3, suggest to use these systems to get magnetic recording media with ultra high density. Poly(vinyl alcohol) (PVA) and Polystyrene (PS) films were prepared from this nanocomposite material. After a magnetic field treatment nanoparticles within the PVA films are free to rotate in response to an applied magnetic field. This PVA based nanocomposite film portends a new class of magnetic material with very little or no electrical and magnetic loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号