首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The branching ratios and rate coefficients have been measured at 298 K for the reactions between CHCl2F, CHClF2, and CH2ClF and the following cations (with recombination energies in the range 6.3-21.6 eV); H3O+, SFx+ (x = 1-5), CFy+ (y = 1-3), NO+, NO2+, O2+, Xe+, N2O+, O+, CO2+, Kr+, CO+, N+, N2+, Ar+, F+, and Ne+. The majority of the reactions proceed at the calculated collisional rate, but the reagent ions SF3+, NO+, NO2+, and SF2+ do not react. Surprisingly, although all of the observed product channels are calculated to be endothermic, H3O+ does react with CHCl2F. On thermochemical grounds, Xe+ appears to react with these molecules only when it is in its higher-energy 2P1/2 spin-orbit state. In general, most of the reactions form products by dissociative charge transfer, but some of the reactions of CH2ClF with the lower-energy cations produce the parent cation in significant abundance. The branching ratios produced in this study and by threshold photoelectron-photoion coincidence spectroscopy agree reasonably well over the energy range 11-22 eV. In about one-fifth of the large number of reactions studied, the branching ratios are in excellent agreement and appreciable energy resonance between an excited state and the ground state of the ionized neutral exists, suggesting that these reactions proceed exclusively by a long-range charge-transfer mechanism. Upper limits for the enthalpy of formation at 298 K of SF4Cl (-637 kJ mol-1), SClF (-28 kJ mol-1), and SHF (-7 kJ mol-1) are determined.  相似文献   

2.
The N2O4 isomerization in gas phase has an energy barrier of 31 kcal mol-1 at 298 K. This energy barrier may be reduced due to the interaction of the N2O4 isomers with water or nitric acid clusters adsorbed on surfaces. The Gibbs free energy barrier for this reaction in water medium is estimated to be reduced to 21.1 kcal mol-1 by using the ab initio calculations and the polarizable continuum model (PCM). By using the transition state theory (TST), this model estimates that the N2O4 isomerization may be as fast as 2.0 x 10(-3) s-1 in aqueous phase at room temperature, which confirms the Finlayson-Pitts model for the heterogeneous hydrolysis of NO2 on surfaces. The activation energy of the N2O4 isomerization is about 21 kcal mol-1. The rate coefficient for this reaction is considerably fast, 1.2 x 10(-2) s-1, in aqueous phase at T = 373 K.  相似文献   

3.
Xia WS  Zhu RS  Lin MC  Mebel AM 《Faraday discussions》2001,(119):191-205; discussion 255-74
The potential energy surface (PES) of the CH3OH system has been characterized by ab initio molecular orbital theory calculations at the G2M level of theory. The mechanisms for the decomposition of CH3OH and the related bimolecular reactions, CH3 + OH and 1CH2 + H2O, have been elucidated. The rate constants for these processes have been calculated using variational RRKM theory and compared with available experimental data. The total decomposition rate constants of CH3OH at the high- and low-pressure limits can be represented by k infinity = 1.56 x 10(16) exp(-44,310/T) s-1 and kAr0 = 1.60 x 10(36) T-12.2 exp(-48,140/T) cm3 molecule-1 s-1, respectively, covering the temperature range 1000-3000 K, in reasonable agreement with the experimental values. Our results indicate that the product branching ratios are strongly pressure dependent, with the production of CH3 + OH and 1CH2 + H2O dominant under high (P > 10(3) Torr) and low (P < 1 atm) pressures, respectively. For the bimolecular reaction of CH3 and OH, the total rate constant and the yields of 1CH2 + H2O and H2 + HCOH at lower pressures (P < 5 Torr) could be reasonably accounted for by the theory. For the reaction of 1CH2 with H2O, both the yield of CH3 + OH and the total rate constant could also be satisfactorily predicted theoretically. The production of 3CH2 + H2O by the singlet to triplet surface crossing, predicted to occur at 4.3 kcal mol-1 above the H2C...OH2 van der Waals complex (which lies 82.7 kcal mol-1 above CH3OH), was neglected in our calculations.  相似文献   

4.
High-level electronic structure calculations have been used to construct portions of the potential energy surfaces related to the reaction of diborane with ammonia and ammonia borane (B2H6 + NH3 and B2H6 + BH3NH3)to probe the molecular mechanism of H2 release. Geometries of stationary points were optimized at the MP2/aug-cc-pVTZ level. Total energies were computed at the coupled-cluster CCSD(T) theory level with the correlation-consistent basis sets. The results show a wide range of reaction pathways for H2 elimination. The initial interaction of B2H6 + NH3 leads to a weak preassociation complex, from which a B-H-B bridge bond is broken giving rise to a more stable H3BHBH2NH3 adduct. This intermediate, which is also formed from BH3NH3 + BH3, is connected with at least six transition states for H2 release with energies 18-93 kal/mol above the separated reactants. The lowest-lying transition state is a six-member cycle, in which BH3exerts a bifunctional catalytic effect accelerating H2 generation within a B-H-H-N framework. Diborane also induces a catalytic effect for H2 elimination from BH3NH3 via a three-step pathway with cyclic transition states. Following conformational changes, the rate-determining transition state for H2 release is approximately 27 kcal/mol above the B2H6 + BH3NH3 reactants, as compared with an energy barrier of approximately 37 kcal/mol for H2 release from BH3NH3. The behavior of two separated BH3 molecules is more complex and involves multiple reaction pathways. Channels from diborane or borane initially converge to a complex comprising the H3BHBH2NH3adduct plus BH3. The interaction of free BH3 with the BH3 moiety of BH3NH3 via a six-member transition state with diborane type of bonding leads to a lower-energy transition state. The corresponding energy barrier is approximately 8 kcal/mol, relative to the reference point H3BHBH2NH3 adduct + BH3. These transition states are 27-36 kcal/mol above BH3NH3 + B2H6, but 1-9 kcal/mol below the separated reactants BH3NH3 + 2 BH3. Upon chemical activation of B2H6 by forming 2 BH3, there should be sufficient internal energy to undergo spontaneous H2 release. Proceeding in the opposite direction, the H2 regeneration of the products of the B2H6 + BH3NH3reaction should be a feasible process under mild thermal conditions.  相似文献   

5.
The N2H+O potential energy profile was studied at the CCSD(T)/6-311G++(df,p)//MP2/6-311G(d,p) level. Reactions associated with four intermediates(cis-HNNO, trans-HNNO, NNHO, and NNOH) were investigated. The results indicate that N2H+O reaction toward H+N2O is more favored than that toward N2+OH, consistent with previous experimental studies. The pathways for the two reactions are found to go through cis-HNNO, transition state, and finally to the products. The N2H+O→NH+NO reaction was studied in detail. Product NO in such a reaction is likely to occur via cis-HNNO, followed by trans-HNNO, and finally dissociates into NH+NO. These results suggest that N2H+O→NH+NO is an important channel in NO production.  相似文献   

6.
In order to address problems such as aging, cell death, and cancer, it is important to understand the mechanisms behind reactions causing DNA damage. One specific reaction implicated in DNA oxidative damage is hydroxyl free-radical attack on adenine (A) and other nucleic acid bases. The adenine reaction has been studied experimentally, but there are few theoretical results. In the present study, adenine dehydrogenation at various sites, and the potential-energy surfaces for these reactions, are investigated theoretically. Four reactant complexes [A···OH]* have been found, with binding energies relative to A+OH* of 32.8, 11.4, 10.7, and 10.1 kcal mol(-1). These four reactant complexes lead to six transition states, which in turn lie +4.3, -5.4, (-3.7 and +0.8), and (-2.3 and +0.8) kcal mol(-1) below A+OH*, respectively. Thus the lowest lying [A···OH]* complex faces the highest local barrier to formation of the product (A-H)*+H(2)O. Between the transition states and the products lie six product complexes. Adopting the same order as the reactant complexes, the product complexes [(A-H)···H(2)O]* lie at -10.9, -22.4, (-24.2 and -18.7), and (-20.5 and -17.5) kcal mol(-1), respectively, again relative to separated A+OH*. All six A+OH* → (A-H)*+H(2)O pathways are exothermic, by -0.3, -14.7, (-17.4 and -7.8), and (-13.7 and -7.8) kcal mol(-1), respectively. The transition state for dehydrogenation at N(6) lies at the lowest energy (-5.4 kcal mol(-1) relative to A+OH*), and thus reaction is likely to occur at this site. This theoretical prediction dovetails with the observed high reactivity of OH radicals with the NH(2) group of aromatic amines. However, the high barrier (37.1 kcal mol(-1)) for reaction at the C(8) site makes C(8) dehydrogenation unlikely. This last result is consistent with experimental observation of the imidazole ring opening upon OH radical addition to C(8). In addition, TD-DFT computed electronic transitions of the N(6) product around 420 nm confirm that this is the most likely site for hydrogen abstraction by hydroxyl radical.  相似文献   

7.
8.
Computational quantum theory is employed to determine the thermochemical properties of n-alkyl nitro and nitrite compounds: methyl and ethyl nitrites, CH3ONO and C2H5ONO, plus nitromethane and nitroethane, CH3NO2 and C2H5NO2, at 298.15 K using multilevel G3, CBS-QB3, and CBS-APNO composite methods employing both atomization and isodesmic reaction analysis. Structures and enthalpies of the corresponding aci-tautomers are also determined. The enthalpies of formation for the most stable conformers of methyl and ethyl nitrites at 298 K are determined to be -15.64 +/- 0.10 kcal mol-1 (-65.44 +/- 0.42 kJ mol-1) and -23.58 +/- 0.12 kcal mol-1 (-98.32 +/- 0.58 kJ mol-1), respectively. DeltafHo(298 K) of nitroalkanes are correspondingly evaluated at -17.67 +/- 0.27 kcal mol-1 (-74.1 +/- 1.12 kJ mol-1) and -25.06 +/- 0.07 kcal mol-1 (-121.2 +/- 0.29 kJ mol-1) for CH3NO2 and C2H5NO2. Enthalpies of formation for the aci-tautomers are calculated as -3.45 +/- 0.44 kcal mol-1 (-14.43 +/- 0.11 kJ mol-1) for aci-nitromethane and -14.25 +/- 0.44 kcal mol-1 (-59.95 +/- 1.84 kJ mol-1) for the aci-nitroethane isomers, respectively. Data are evaluated against experimental and computational values in the literature with recommendations. A set of thermal correction parameters to atomic (H, C, N, O) enthalpies at 0 K is developed, to enable a direct calculation of species enthalpy of formation at 298.15 K, using atomization reaction and computation outputs.  相似文献   

9.
Fikri M  Meyer S  Roggenbuck J  Temps F 《Faraday discussions》2001,(119):223-42; discussion 255-74
Measurements of the product branching ratios of the reaction CH2 (X 3B1) + NO (1) are presented together with calculations of the thermal rate constant and branching ratios using unimolecular rate theory. The reaction was investigated experimentally at room temperature using FTIR spectroscopy. The yields of the main products HCNO and HCN were found to be gamma HCNO = 0.89 +/- 0.06, gamma HCN = 0.11 +/- 0.06. Other minor products could be rationalized by numerical simulations of the reaction system taking into account possible consecutive reactions. The potential energy surface for the reaction was characterized by quantum chemical calculations using ab initio and density functional methods. The proposed reaction pathways connecting reactants to products were explored by multi-channel unimolecular rate theory calculations to determine the CH2 (X) + NO capture rate constant and the rate constants for the different product channels as a function of temperature. The calculated capture rate constant of k = 2.3 x 10(13) cm3 mol-1 s-1 is in good agreement with experimental values at room temperature. Collisional stabilization of the initial H2CNO recombination complex was predicted to be negligible up to pressures of > 1 bar. For ambient pressures and temperatures up to 2000 K, HCNO + H were calculated as the dominating products, with gamma HCNO approximately 0.94 in agreement with the experiments. The channel to HCN + OH was calculated with 0.015 < or = gamma HCN < or = 0.05, only slightly below the experimental value.  相似文献   

10.
The CH3 + OH bimolecular reaction and the dissociation of methanol are studied theoretically at conditions relevant to combustion chemistry. Kinetics for the CH3 + OH barrierless association reaction and for the H + CH2OH and H + CH3O product channels are determined in the high-pressure limit using variable reaction coordinate transition state theory and multireference electronic structure calculations to evaluate the fragment interaction energies. The CH3 + OH --> 3CH2 + H2O abstraction reaction and the H2 + HCOH and H2 + H2CO product channels feature localized dynamical bottlenecks and are treated using variational transition state theory and QCISD(T) energies extrapolated to the complete basis set limit. The 1CH2 + H2O product channel has two dynamical regimes, featuring both an inner saddle point and an outer barrierless region, and it is shown that a microcanonical two-state model is necessary to properly describe the association rate for this reaction over a broad temperature range. Experimental channel energies for the methanol system are reevaluated using the Active Thermochemical Tables (ATcT) approach. Pressure dependent, phenomenological rate coefficients for the CH3 + OH bimolecular reaction and for methanol decomposition are determined via master equation simulations. The predicted results agree well with experimental results, including those from a companion high-temperature shock tube determination for the decomposition of methanol.  相似文献   

11.
A pure and highly intense state-selected pulsed supersonic CH(X (2)Pi) radical beam source was developed by use of the C((1)D)+H(2) reaction with the combination of the state selection and purification by an electrostatic hexapole field. Under the beam-cell condition, the elementary reactions of CH+NO and CH+O(2) were studied by using this state-selected CH beam. NH(A (3)Pi) [and NCO(A (2)Sigma(+))] formations and OH(A (2)Sigma(+)) formation were directly identified in the elementary reaction of CH+NO and CH+O(2), respectively. For the CH+NO reaction, the relative branching ratio sigma(NCO*)sigma(NH) of NCO(A (2)Sigma(+)) formation to NH(A (3)Pi) formation was determined to be 0.35+/-0.15. The state-selected reaction cross sections were determined for each rotational state of CH. In the CH+NO reaction, a remarkable rotational state dependence of the reactive cross section was revealed, while the CH+O(2) reaction showed little rotational state dependence.  相似文献   

12.
Detailed formaldehyde adsorption and dissociation reactions on Fe(100) surface were studied using first principle calculations and molecular dynamics (MD) simulations, and results were compared with available experimental data. The study includes formaldehyde, formyl radical (HCO), and CO adsorption and dissociation energy calculations on the surface, adsorbate vibrational frequency calculations, density of states analysis of clean and adsorbed surfaces, complete potential energy diagram construction from formaldehyde to atomic carbon (C), hydrogen (H), and oxygen (O), simulation of formaldehyde adsorption and dissociation reaction on the surface using reactive force field, ReaxFF MD, and reaction rate calculations of adsorbates using transition state theory (TST). Formaldehyde and HCO were adsorbed most strongly at the hollow (fourfold) site. Adsorption energies ranged from ?22.9 to ?33.9 kcal/mol for formaldehyde, and from ?44.3 to ?66.3 kcal/mol for HCO, depending on adsorption sites and molecular direction. The dissociation energies were investigated for the dissociation paths: formaldehyde → HCO + H, HCO → H + CO, and CO → C + O, and the calculated energies were 11.0, 4.1, and 26.3 kcal/mol, respectively. ReaxFF MD simulation results were compared with experimental surface analysis using high resolution electron energy loss spectrometry (HREELS) and TST based reaction rates. ReaxFF simulation showed less reactivity than HREELS observation at 310 and 523 K. ReaxFF simulation showed more reactivity than the TST based rate for formaldehyde dissociation and less reactivity than TST based rate for HCO dissociation at 523 K. TST‐based rates are consistent with HREELS observation. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Reported herein are the hydrogen atom transfer (HAT) reactions of two closely related dicationic iron tris(alpha-diimine) complexes. FeII(H2bip) (iron(II) tris[2,2'-bi-1,4,5,6-tetrahydropyrimidine]diperchlorate) and FeII(H2bim) (iron(II) tris[2,2'-bi-2-imidazoline]diperchlorate) both transfer H* to TEMPO (2,2,6,6-tetramethyl-1-piperidinoxyl) to yield the hydroxylamine, TEMPO-H, and the respective deprotonated iron(III) species, FeIII(Hbip) or FeIII(Hbim). The ground-state thermodynamic parameters in MeCN were determined for both systems using both static and kinetic measurements. For FeII(H2bip) + TEMPO, DeltaG degrees = -0.3 +/- 0.2 kcal mol-1, DeltaH degrees = -9.4 +/- 0.6 kcal mol-1, and DeltaS degrees = -30 +/- 2 cal mol-1 K-1. For FeII(H2bim) + TEMPO, DeltaG degrees = 5.0 +/- 0.2 kcal mol-1, DeltaH degrees = -4.1 +/- 0.9 kcal mol-1, and DeltaS degrees = -30 +/- 3 cal mol-1 K-1. The large entropy changes for these reactions, |TDeltaS degrees | = 9 kcal mol-1 at 298 K, are exceptions to the traditional assumption that DeltaS degrees approximately 0 for simple HAT reactions. Various studies indicate that hydrogen bonding, solvent effects, ion pairing, and iron spin equilibria do not make major contributions to the observed DeltaS degrees HAT. Instead, this effect arises primarily from changes in vibrational entropy upon oxidation of the iron center. Measurement of the electron-transfer half-reaction entropy, |DeltaS degrees Fe(H2bim)/ET| = 29 +/- 3 cal mol-1 K-1, is consistent with a vibrational origin. This conclusion is supported by UHF/6-31G* calculations on the simplified reaction [FeII(H2N=CHCH=NH2)2(H2bim)]2+...ONH2 left arrow over right arrow [FeII(H2N=CHCH=NH2)2(Hbim)]2+...HONH2. The discovery that DeltaS degrees HAT can deviate significantly from zero has important implications on the study of HAT and proton-coupled electron-transfer (PCET) reactions. For instance, these results indicate that free energies, rather than enthalpies, should be used to estimate the driving force for HAT when transition-metal centers are involved.  相似文献   

14.
This paper presents an application of the reaction class transition state theory (RC‐TST) to predict thermal rate constants for hydrogen abstraction reactions of the type R‐OH + H → R?‐OH + H2. We have derived all parameters for the RC‐TST method with linear energy relationships (LERs) and the barrier height grouping (BHG) approach for this reaction class from rate constants of 37 representative reactions divided in two types of hydrogen abstraction, namely from α carbon sites and non‐α carbon sites two training sets. Error analyses indicate that the RC‐TST/LER, where only reaction energy is needed, and RC‐TST/ BHG, where no other information is needed, can predict rate constants for any reaction in this reaction class with satisfactory accuracy for combustion modeling. Specifically for this reaction class, the RC‐TST/LER and RC‐TST/BHG methods have, respectively, less than 40% and 90% systematic errors in the predicted rate constants, when compared to the explicit full TST/Eckart method. The branching ratio analysis shows that in the low‐temperature regime α abstractions are dominant, whereas, for T > 1500 K, abstractions at other sites become more important. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 43: 78–98, 2011  相似文献   

15.
The mechanism for the CH3+C2H5OH reaction has been investigated by the modified Gaussian-2 method based on the geometric parameters of the stationary points optimized at the B3LYP/6-311+G(d,p) level of theory. Five transition states have been identified for the production of CH4+CH3CHOH (TS1), CH4+CH3CH2O (TS2), CH4+CH2CH2OH (TS3), CH3OH+CH3CH2 (TS4), and CH3CH2OCH3+H (TS5) with the corresponding barriers 12.0, 13.2, 16.0, 44.7, and 49.9 kcal/mol, respectively. The predicted rate constants and branching ratios for the three lower-energy H-abstraction reactions were calculated using the conventional and variational transition state theory with quantum-mechanical tunneling corrections for the temperature range 300-3000 K. The predicted total rate constant, kt=8.36 x 10(-76) T(20.00) exp(5258/T) cm3 mol(-1) s(-1) (300-600 K) and 6.10 x 10(-25) T(4.10)exp(-4058/T) cm3 mol(-1) s(-1) (600-3000 K), agrees closely with existing experimental data in the temperature range 403-523 K. Similarly, the predicted rate constants for CH3+CH3CD2OH and CD3+C2H5OD are also in reasonable agreement with available low temperature kinetic data.  相似文献   

16.
Quantum-chemical calculations were performed on the mechanisms of reaction of NCN with NO and NS. Possible mechanisms were classified according to four pathways yielding products in the following four possible groups: N2O/N2S + CN, N2 + NCO/NCS, N2 + CNO/CNS, and CNN + NO/NS, labeled in order from p1/p1s to p4/p4s. The local structures, transition structures, and potential-energy surfaces with respect to the reaction coordinates are calculated, and the barriers are compared. In the NCN + NO reaction, out of several adduct structures, only the nitroso adduct NCNNO lies lower in energy than the reactants, by 21.89 kcal/mol; that adduct undergoes rapid transformation into the products, in agreement with experimental observation. For the NS counterpart, both thionitroso NCNNS and thiazyl NCNSN adducts have energies much lower than those of the reactants, by 43 and 29 kcal/mol, respectively, and a five-membered-ring NCNNS (having an energy lower than those of the reactants by 36 kcal/mol) acts as a bridge in connecting these two adducts. The net energy barriers leading to product channels other than p4s are negative for the NS reaction, whereas those for the NO analogue are all positive. The channel leading to p1 (N2O + CN) has the lowest energy (3.81 kcal/mol), whereas the channels leading to p2 (N2 + NCO) and p2s (N2 + NCS) are the most exothermic (100.94 and 107.38 kcal/mol, respectively).  相似文献   

17.
采用量子化学密度泛函理论(DFT)对NO与NHi自由基的反应机理进行了研究,并结合经典过渡态理论对各反应速率常数进行了计算。结果表明,NO与NH2自由基的反应体系可通过六个反应通道形成N2+H2O、N2O+H2和N2H+OH。从能量变化和反应速率两方面考虑,产物N2+H2O最容易生成,其最佳反应通道为NO+NH2→→N2+H2O;NO与NH自由基的反应体系可通过七个反应通道形成N2+OH、N2O+H和N2H+O;其中,N2+OH最容易生成,最佳反应通道为NO+NH→→N2+OH。比较发现, NH比NH2自由基更易与NO发生反应生成N2。因此,在实际运行中改变操作条件,实现NH2等向NH方向转化,有利于NOx的还原。  相似文献   

18.
Reactions of ground-state NH (3sigma-) radicals with H2, H2O, and CO2 have been investigated quantum chemically, whereby the stationary points of the appropriate reaction potential energy surfaces, that is, reactants, products, intermediates, and transition states, have been identified at the G3//B3LYP level of theory. Reaction between NH and H2 takes place via a simple abstraction transition state, and the rate coefficient for this reaction as derived from the quantum chemical calculations, k(NH + H2) = (1.1 x 10(14)) exp(-20.9 kcal mol(-1)/RT) cm3 mol(-1) s(-1) between 1000 and 2000 K, is found to be in good agreement with experiment. For reaction between triplet NH and H2O, no stable intermediates were located on the triplet reaction surface although several stable species were found on the singlet surface. No intersystem crossing seam between triplet NH + H2O and singlet HNO + H2 (the products of lowest energy) was found; hence there is no evidence to support the existence of a low-energy pathway to these products. A rate coefficient of k(NH + H2O) = (6.1 x 10(13)) exp(-32.8 kcal mol(-1)/RT) cm3 mol(-1) s(-1) between 1000 and 2000 K for the reaction NH (3sigma-) + H2O --> NH2 (2B) + OH (2pi) was derived from the quantum chemical results. The reverse rate coefficient, calculated via the equilibrium constant, is in agreement with values used in modeling the thermal de-NO(x) process. For the reaction between triplet NH and CO2, several stable intermediates on both triplet and singlet reaction surfaces were located. Although a pathway from triplet NH + CO2 to singlet HNO + CO involving intersystem crossing in an HN-CO2 adduct was discovered, no pathway of sufficiently low activation energy was discovered to compare with that found in an earlier experiment [Rohrig, M.; Wagner, H. G. Proc. Combust. Inst. 1994, 25, 993.].  相似文献   

19.
Ab initio CCSD(T) calculations of intermediates and transition states on the singlet and triplet C3H2 potential energy surfaces extrapolated to the complete basis set limit are combined with statistical computations of energy-dependent rate constants of the C(3P)+C2H2 reaction under crossed molecular beam conditions. Rice-Ramsperger-Kassel-Marcus theory is applied for isomerization and dissociation steps within the same multiplicity and radiationless transition and nonadiabatic transition state theories are used for singlet-triplet intersystem crossing rates. The calculated rate constants are utilized to predict product branching ratios. The results demonstrate that, in qualitative agreement with available experimental data, c-C3H+H and C3+H2 are the most probable products at low collision energies, whereas l-C3H+H becomes dominant at higher Ec above approximately 25 kJ/mol.  相似文献   

20.
The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm, using either 36 or 60 optical passes corresponding to total path lengths of 3.25 or 5.25 m, respectively, has been used to study the bimolecular reactions, OH+CF3H-->CF3+H2O (1) and CF3+H2O-->OH+CF3H (-1), between 995 and 1663 K. During the course of the study, estimates of rate constants for CF3+OH-->products (2) could also be determined. Experiments on reaction -1 were transformed through equilibrium constants to k1, giving the Arrhenius expression k1=(9.7+/-2.1)x10(-12) exp(-4398+/-275K/T) cm3 molecule(-1) s(-1). Over the temperature range, 1318-1663 K, the results for reaction 2 were constant at k2=(1.5+/-0.4)x10(-11) cm3 molecule(-1) s(-1). Reactions 1 and -1 were also studied with variational transition state theory (VTST) employing QCISD(T) properties for the transition state. These a priori VTST predictions were in good agreement with the present experimental results but were too low at the lower temperatures of earlier experiments, suggesting that either the barrier height was overestimated by about 1.3 kcal/mol or that the effect of tunneling was greatly underestimated. The present experimental results have been combined with the most accurate earlier studies to derive an evaluation over the extended temperature range of 252-1663 K. The three parameter expression k1=2.08x10(-17) T1.5513 exp(-1848 K/T) cm3 molecule(-1) s(-1) describes the rate behavior over this temperature range. Alternatively, the expression k1,th=1.78x10(-23) T3.406 exp(-837 K/T) cm3 molecule(-1) s(-1) obtained from empirically adjusted VTST calculations over the 250-2250 K range agrees with the experimental evaluation to within a factor of 1.6. Reaction 2 was also studied with direct CASPT2 variable reaction coordinate transition state theory. The resulting predictions for the capture rate are found to be in good agreement with the mean of the experimental results and can be represented by the expression k2,th=2.42x10(-11) T-0.0650 exp(134 K/T) cm3 molecule(-1) s(-1) over the 200-2500 K temperature range. The products of this reaction are predicted to be CF2O+HF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号