首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibrational characteristics of CD3CN solutions of LiClO4 and NaClO4 have been studied by means of infrared and Raman spectroscopy. Blue shifts of 22 and 11 cm(-1) of the v2 C[triple bond]N stretch are observed resulting from interaction of CD3CN with Li+ and Na+, respectively. The number of primary solvation sites of both Li+ and Na+ in acetonitrile is believed to be four from the comparison of the Raman intensities of the C[triple bond]N stretch for free CD3CN and those coordinated to Li+ and Na+. Evidently formation of contact ion pairs of the cation (Li+ or Na+) and anion (ClO4-) is more probable at a higher concentration of the salt. The characteristics of the v2 C[triple bond]N stretch, v4 C-C stretch, and v8 CCN deformation bands vary substantially upon coordination, while other vibrational bands are relatively immune to the donor-acceptor interaction. DFT calculations have also been performed at the BLYP/6-31 + G(2d,p) level to examine the structures and vibrational characteristics of CD3CN coordinated to Li+ and Na+. The calculated results are in good agreement with the observed vibrational characteristics.  相似文献   

2.
The ring-opening reactions of a series of sila[1]ferrocenophanes with protic acids of anions with various degrees of noncoordinating character have been explored. Ferrocenyl-substituted silyl triflates FcSiMe2OTf (5 a) and Fc(3)SiOTf (5 b) (Fc=(eta5-C5H4)Fe(eta5-C5H5)) were synthesized by means of HOTf-induced ring-opening protonolysis of strained sila[1]ferrocenophanes fcSiMe2 (3 a) and fcSiFc2 (3 b) (fc=(eta5-C5H4)2Fe). Reaction of 3 a and 3 b with HBF4 yielded fluorosubstituted ferrocenylsilanes FcSiMe2F (6 a) and Fc3SiF (6 b) and suggested the intermediacy of a highly reactive silylium ion capable of abstracting F- from the [BF4]- ion. Generation of the solvated silylium ions [FcSiMe2THF]+ (7a+), [Fc3SiTHF]+ (7b+) and [FcSiiPr2OEt2]+ (7c+) at low temperatures, by reaction of the corresponding sila[1]ferrocenophanes (3 a, 3 b, and fcSiiPr2 (3 c), respectively) with H(OEt2)(S)TFPB (S=Et2O or THF; TFPB=tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) was monitored by using low-temperature 1H, 13C, and 29Si NMR spectroscopy. In situ reaction of 7a+, 7b+, and 7c+ with excess pyridine generated [FcSiMe2py]+ (8a+), [Fc3Sipy]+ (8b+), and [FcSiiPr2py]+ (8c+), respectively, as observed by 1H, 13C, and 29Si NMR spectroscopy. A preparative-scale reaction of 3 b with H(OEt2)(THF)TFPB at -60 degrees C and subsequent addition of excess pyridine gave isolable red crystals of 8b-[TFPB]CHCl3, which were characterized by 1H and 29Si NMR spectroscopy as well as by single-crystal X-ray diffraction.  相似文献   

3.
The tetracyclic dilithio-Si,Si'-oxo-bridged bis(N,N'-methylsilyl-beta-diketiminates) 2 and 3, having an outer LiNCCCNLiNCCCN macrocycle, were prepared from [Li{CH(SiMe(3))SiMe(OMe)(2)}](infinity) and 2 PhCN. They differ in that the substituent at the beta-C atom of each diketiminato ligand is either SiMe(3) (2) or H (3). Each of and has (i) a central Si-O-Si unit, (ii) an Si(Me) fragment N,N'-intramolecularly bridging each beta-diketiminate, and (iii) an Li(thf)(2) moiety N,N'-intermolecularly bridging the two beta-diketiminates (thf = tetrahydrofuran). Treatment of [Li{CH(SiMe(3))(SiMe(2)OMe)}](8) with 2Me(2)C(CN)(2) yielded the amorphous [Li{Si(Me)(2)((NCR)(2)CH)}](n) [R = C(Me)(2)CN] (4). From [Li{N(SiMe(3))C(Bu(t))C(H)SiMe(3)}](2) (A) and 1,3- or 1,4-C(6)H(4)(CN)(2), with no apparent synergy between the two CN groups, the product was the appropriate (mu-C(6)H(4))-bis(lithium beta-diketiminate) 6 or 7. Reaction of [Li{N(SiMe(3))C(Ph)=C(H)SiMe(3)}(tmeda)] and 1,3-C(6)H(4)(CN)(2) afforded 1,3-C(6)H(4)(X)X' (X =CC(Ph)N(SiMe3)Li(tmeda)N(SiMe3)CH; X' = CN(SiMe3)Li(tmeda)NC(Ph)=C(H)SiMe3)(9). Interaction of A and 2[1,2-C(6)H(4)(CN)(2)] gave the bis(lithio-isoindoline) derivative [C6H4C(=NH)N{Li(OEt2)}C=C(SiMe3)C(Bu(t))=N(SiMe3)]2 (5). The X-ray structures of 2, 3, 5 and 9 are presented, and reaction pathways for each reaction are suggested.  相似文献   

4.
Lithium aluminates Li[Al(O-2,6-Me(2)C(6)H(3))R'(3)] (R' = Et, Ph) react with the μ(3)-alkylidyne oxoderivative ligands [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CR)] [R = H (1), Me (2)] to afford the aluminum-lithium-titanium cubane complexes [{R'(3)Al(μ-O-2,6-Me(2)C(6)H(3))Li}(μ(3)-O)(3){Ti(η(5)-C(5)Me(5))}(3)(μ(3)-CR)] [R = H, R' = Et (5), Ph (7); R = Me, R' = Et (6), Ph (8)]. Complex 7 evolves with the formation of a lithium dicubane species and a Li{Al(μ-O-2,6-Me(2)C(6)H(3))Ph(3)}(2)] unit.  相似文献   

5.
A number of metal complexes containing one of the following ligands: the 1-azaallyl [N(R)C(Ph)C(H)R]- ([triple bond]L-), the 1,3-diazaallyl([triple bond]LL'-) and the isomeric beta-diketiminate [{N(R)C(Ph)]}2CH]- ( identical with LL-) have been prepared (R = SiMe(3)). These are the crystalline compounds H(LL) (2), Na(LL) (3), [Na(LL)(thf)2] (4), Na(L) (6), [Na(mu-LL')]8 (7), [K(mu-L)(eta6-C6H6)]2 (8), [K(mu-LL')(thf)]2 (9), [K(thf)2(mu-LL)](infinity) (10) and [Ni(LL')2] (11). A new synthesis of Na[C(H)R2] (1) involved Hg[C(H)R2]2 and Na/Hg as reagents. The beta-diketimine 2 was obtained from Li(LL) and cyclopentadiene. Under different conditions compounds 3, 6 and 7 were isolated from 1 and benzonitrile, and compounds 8, 9 and 10 from K[C(H)R2] and PhCN. Complex 11 was derived from [Li(LL')]2 and [NiBr(2)(dme)]. The solution obtained from 1 + 2 PhCN in Et2O at ambient temperature was a mixture (5) of 3 (predominantly) and 7. The 1-azaallyl complex 8 has the ligand bound to the metal as the enamide, and this is also probably (NMR) the case for 6. The molecular structures of the crystalline complexes 7, 8 and 11 are presented; that of 10 was published earlier. Compound 7, a cyclooctamer, is particularly interesting, in that each LL'- ligand is bridging via one of its N atoms to two neighbouring sodium ions and is not only N,N'- but also (eta2-C[=]C)-chelating to one of them.  相似文献   

6.
The synthesis and characterization of a new constrained tetraazamacrocyclic ligand, 1,4,8,11-tetraazabicyclo[9.3.3]heptadecane (1,11-C(3)-cyclam), is reported. Because of its basicity, this ligand (pK(a) of the protonated form >13.5) requires aprotic solvents for its metalation reactions. Two complexes of this ligand, [Ni(1,11-C(3)-cyclam](OTf)(2) and [Co(1,11-C(3)-cyclam)(NCS)(2)](OTf), have been characterized by single-crystal X-ray crystallography. For the Ni(II) complex, the 1,5-diazacyclooctane (daco) subunit of the ligand is in the chair-boat conformation, whereas that same subunit in the Co(III) complex is in the chair-chair conformation. For the Ni(II) complex, C(12) and H(12a) block one of the coordination sites. The (1)H and (13)C NMR spectra of the Ni(II) complex in D(2)O have very sharp resonances, indicative of low-spin Ni(II). The resonance for H(12a) appears at 4.5 ppm, suggesting an interaction with Ni(II). In acetonitrile, the (1)H and (13)C spectra are broadened, indicative of a low-spin/high-spin equilibrium due to axial coordination by acetonitrile. C(12) experiences the greatest degree of broadening in the (13)C NMR spectrum. Variable-temperature NMR spectroscopy from -70 to +80 degrees C shows no significant change as a function of temperature. The electronic spectrum of the Ni(II) complex (lambda(max) = 449.9 nm) is consistent with steric and electronic factors for this complex.  相似文献   

7.
The influence of ethereal solvents (diethyl ether (Et(2)O), tetrahydrofuran (THF) or dimethoxyethane (DME)) on the formation of organolithiated compounds has been studied on the 1,2-C(2)B(10)H(12) platform. This platform is very attractive because it contains two C(c)-H adjacent units ready to be lithiated. On would expect that the closeness of both C(c)-H units would induce a higher resistance of the second C(c)-H unit being lithiated following the first lithiation. However, this is not the case, which makes 1,2-C(2)B(10)H(12) attractive to get a better understanding of the ethereal solvent influence on the lithiation process. The formation of carboranyl disubstituted species has been attributed to the existence of an equilibrium in which the carboranyl monolithiated species disproportionates into dilithium carborane and pristine carborane. The way Li(+) binds to C(c) in the carboranyl fragment and how the solvent stabilizes such a binding is paramount to drive the reaction to the generation of mono- and disubstituted carboranes. In fact, the proportion of mono- and disubstituted species is a consequence of the formation of contact ion pairs and, to a lesser extent, of separated ion pairs in ethereal solvents. All ethereal solvents generate contact ion pairs in which a large degree of covalent C(c)-Li(solvent) bonding can be assumed, according to experimental and theoretical data. Furthermore, Et(2)O tends to produce carboranyllitium ion pairs with a higher degree of contact ion pairs than THF or DME. It has been determined that for a high-yield preparation of monosubstituted 1-R-1,2-C(2)B(10)H(11), in C(c)-R (R=C, S or P) coupling reactions, the reagent type defines which is the most appropriate ethereal solvent. In reactions in which a halide is generated, as with ClPPh(2) or BrCH(2) CH=CH(2), Et(2)O appears to produce the highest degree of monosubstitution. In other situations, such as with S(8), or when no halide is generated, THF or DME facilitate the largest degree of monosubstitution. It has been shown that upon the self reaction of Li[1,2-C(2)B(10)H(11)] to produce [LiC(4)B(20)H(22)](-) the nucleophilicity of the carboranyllithium can even be further enhanced, beyond the ethereal solvent, by synergism with halide salts. The mediation of Li(+) in producing isomerizations on allyl substituents has also been demonstrated, as Et(2)O does not tend to induce isomerization, whereas THF or DME produces the propenyl isomer. The results presented here most probably can be extended to other molecular types to interpret the Li(+) mediation in C-C or other C-X coupling reactions.  相似文献   

8.
The first aryldiimine NCN-pincer ligated rare earth metal dichlorides (2,6-(2,6-C6H3R2N=CH)2-C6H3)LnCl2(THF)2 (Ln = Y, R = Me (1), Et (2), iPr (3); R = Et, Ln = La (4), Nd (5), Gd (6), Sm (7), Eu (8), Tb (9), Dy (10), Ho (11), Yb (12), Lu (13)) were successfully synthesized via transmetalation between 2,6-(2,6-C6H3-R2N=CH)2-C6H3Li and LnCl3(THF)(1-3.5). These complexes are isostructural monomers with two coordinating THF molecules, where the pincer ligand coordinates to the central metal ion in a kappaC:kappaN:kappaN' tridentate mode, adopting a meridional geometry. Complexes 1-6, 9-11, and 13 combined with aluminum tris(alkyl)s and [Ph3C][B(C6F5)4] established a homogeneous Ziegler-Natta catalyst system, which exhibited high activities and excellent cis-1,4 selectivities for the polymerizations of butadiene (T(p) = 25 degrees C, 99.9%; 0 degrees C, 100%) and isoprene (T(p) = 25 degrees C, 98.8%). Remarkably, such high cis-1,4 selectivity almost remained at elevated polymerization temperatures up to 80 degrees C and did not vary with the type of the central lanthanide element, however, which was influenced obviously by the ortho substituent of the N-aryl ring of the ligands and the bulkiness of the aluminum alkyls. The Ln-Al bimetallic cations were considered as the active species. These results shed new light on improving the catalytic performance of the conventional Ziegler-Natta catalysts for the specific selective polymerization of dienes.  相似文献   

9.
The 2-(N-alkylcarboxamide)-6-iminopyridine ligands (L1-L7) can bind as either mono-anionic tridentate N^N^N ligands on reaction with PdCl(2)(CH(3)CN)(2), to form complexes LPdCl (C1-C7), or as neutral tridentate N^N^O ligands with NiCl(2)·6H(2)O, to produce complexes LNiCl(2) (C8-C14). All metal complexes were characterized by IR spectroscopy and elemental analysis, and in the case of the palladium complexes, by (1)H and (13)C NMR spectroscopy. The crystal structures of C3, C4, C6, C10, and C12 were determined by X-ray crystallography, and revealed a distorted square geometry around the palladium centre, whereas for nickel, a distorted square-pyramidal geometry was adopted. The representative palladium complex (C3) was further reacted with AgBF(4) in acetonitrile affording the salt [L3Pd(CH(3)CN)][BF(4)] (C15) and the structure of this was confirmed by single-crystal X-ray diffraction. By contrast, carrying out the reaction in dichloromethane rather than acetonitrile, in the presence of malononitrile (CNCH(2)CN), resulted in the formation of the bimetallic palladium complex [L3Pd(CNCH(2)CN)PdL3]·2[BF(4)] (C16). Upon activation with diethylaluminium chloride, all the nickel complexes showed high activity for ethylene dimerization. Furthermore, the palladium complexes exhibited good activities in the vinyl-polymerization of norbornene upon activation with MAO.  相似文献   

10.
The preparation of divalent Mo complexes of dipyrrolide dianions was carried out by reacting Mo(2)(acetate)(4) with the dipotassium salts of Ph(2)C(2-C(4)H(3)NH)(2) and 2-[1,1-bis(1H-pyrrol-2-yl)ethyl]pyridine. The two reactions respectively afforded the diamagnetic [[Ph(2)C(C(4)H(3)N)(2)](2)Mo(2)(OAc)(2)[K(THF)(3)][K(THF)]].THF (1) and [[(2-C(5)H(4) N)(CH(3))C(2-C(4)H(3)N)(2)]Mo(OAc)[K(THF)]](2).THF (2). Both compounds retained two acetate units in the dimetallic structure. Conversely, the reaction of Me(8)Mo(2)Li(4)(THF)(4) with Et(2)C(2-C(4)H(3)NH)(2) afforded the paramagnetic dimer [[Et(2)C(C(4)H(3)N)(2)](4)Mo(2)Li(2)][Li(THF)(4)](2).0.5THF (3). The paramagnetism is most likely caused by the 45 degree rotation of the two Mo(dipyrrolide) units with respect to each other and which, in turn, is caused by the presence of two lithium cations in the molecular structure.  相似文献   

11.
The sequential treatment of Lewis acids with N,N'-bidentate ligands and thereafter with ButLi has afforded a series of hydride-encapsulating alkali metal polyhedra. While the use of Me3Al in conjunction with Ph(2-C5H4N)NH gives Ph(2-C5H4N)NAlMe2 and this reacts with MeLi in thf to yield the simple 'ate complex Ph(2-C5H4N)NAlMe3Li.thf, the employment of an organolithium substrate capable of beta-hydride elimination redirects the reaction significantly. Whereas the use of ButLi has previously yielded a main group interstitial hydride in which H- exhibits micro6-coordination, it is shown here that variability in the coordination sphere of the encapsulated hydride may be induced by manipulation of the organic ligand. Reaction of (c-C6H11)(2-C5H4N)NH with Me3Al/ButLi yields [{(c-C6H11)(2-C5H4N)N}6HLi8]+[(But2AlMe2)2Li]-, which is best viewed as incorporating only linear di-coordination of the hydride ion. The guanidine 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine (hppH) in conjunction with Me2Zn/ButLi yields the micro8-hydride [(hpp)6HLi8]+[But3Zn]-.0.5PhMe. Formation of the micro8-hydride [(hpp)6HLi8]+[ButBEt3]- is revealed by employment of the system Et3B/ButLi. A new and potentially versatile route to interstitial hydrides of this class is revealed by synthesis of the mixed borohydride-lithium hydride species [(hpp)6HLi8]+[Et3BH]- and [(hpp)6HLi8]+[(Et3B)2H]- through the direct combination of hppLi with Et3BHLi.  相似文献   

12.
The reactions of acrylonitrile (AN) with "L(2)PdMe+" species were investigated; (L(2) = CH(2)(N-Me-imidazol-2-yl)(2) (a, bim), (p-tolyl)(3)CCH(N-Me-imidazol-2-yl)(2) (b, Tbim), CH(2)(5-Me-2-pyridyl)(2) (c, CH(2)py'(2)), 4,4'-Me(2)-2,2'-bipyridine (d), 4,4'-(t)Bu(2)-2,2'-bipyridine (e), (2,6-(i)Pr(2)-C(6)H(3))N=CMeCMe=N(2,6-(i)Pr(2)-C(6)H(3)) (f)). [L(2)PdMe(NMe(2)Ph)][B(C(6)F(5))(4)] (2a-c) and [{L(2)PdMe}(2)(mu-Cl)][B(C(6)F(5))(4)] (2d-f) react with AN to form N-bound adducts L(2)Pd(Me)(NCCH=CH(2))(+) (3a-f). 3a-e undergo 2,1 insertion to yield L(2)Pd{CH(CN)Et}+, which form aggregates [L(2)Pd{CH(CN)Et}](n)(n)(+) (n = 1-3, 4a-e) in which the Pd units are proposed to be linked by PdCHEtCN- - -Pd bridges. 3f does not insert AN at 23 degrees C. 4a-e were characterized by NMR, ESI-MS, IR and derivatization to L(2)Pd{CH(CN)Et}(PR(3))+ (R = Ph (5a-e), Me (6a-c)). 4a,b react with CO to form L(2)Pd{CH(CN)Et}(CO)+ (7a,b). 7a reacts with CO by slow reversible insertion to yield (bim)Pd{C(=O)CH(CN)Et}(CO)+ (8a). 4a-e do not react with ethylene. (Tbim)PdMe+ coordinates AN more weakly than ethylene, and AN insertion of 3b is slower than ethylene insertion of (Tbim)Pd(Me)(CH(2)=CH(2))(+) (10b). These results show that most important obstacles to insertion polymerization or copolymerization of AN using L(2)PdR+ catalysts are the tendency of L(2)Pd{CH(CN)CH(2)R}+ species to aggregate, which competes with monomer coordination, and the low insertion reactivity of L(2)Pd{CH(CN)CH(2)R}(substrate)+ species.  相似文献   

13.
以2-羟基-1-萘甲醛和2-羟甲基冠醚为原料,合成3种新的含萘并呋喃基团冠醚(3a-3c),并经1 H NMR,13C NMR,MS及元素分析确证.碱金属和碱土金属离子的加入对体系的最大吸收波长影响不大.Li+使3b摩尔吸光度变大,Ca2+和Ba2+引起3a-3c最大发射波长λem发生相对较大红移,同时使其荧光强度降低.  相似文献   

14.
由110 nm聚苯乙烯(PS)微球组装晶体胶体模板,并用此模板合成三维有序大孔(3-dimensionally ordered macroporous,3DOM)锂离子筛前驱体Li4Ti5O12,用1.0 mol.L-1的盐酸改型制得锂离子筛H4Ti5O12(LiTi-H)。用XRD、SEM、饱和交换容量、pH滴定曲线等表征了材料的形貌、结构和离子交换性能。同时测定了25℃时LiTi-H在0.05 mol.L-1Li+体系吸附锂的动力学数据,并采用吸附动力学Bangham方程和Elovich方程关联离子筛LiTi-H对Li+的离子交换动力学数据。结果表明:PS胶体晶体模板和3DOMLi4Ti5O12锂离子筛前驱体均排列规则有序,大孔直径约90 nm,Li4Ti5O12为尖晶石结构;3DOM Li4Ti5O12酸稳定性好,锂离子筛LiTi-H对Li+具有较高的选择性,对Li+的饱和交换容量达56.70 mg(Li+).g-1;动力学模型用Elovich模型关联较好,离子筛对Li+的离子交换动力学方程是Q=-26.510 4+11.977 4lnt(25℃)。  相似文献   

15.
Syntheses, properties, and synthetic applications of 13-vertex closo- and nido-carboranes are reported. Reactions of the nido-carborane salt [(CH2)3C2B10H10]Na2 with dihaloborane reagents afforded 13-vertex closo-carboranes 1,2-(CH2)3-3-R-1,2-C2B11H10 (R = H (2), Ph (3), Z-EtCH=C(Et) (4), E-(t)BuCH=CH (5)). Treatment of the arachno-carborane salt [(CH2)3C2B10H10]Li4 with HBBr2.SMe2 gave both the 13-vertex carborane 2 and a 14-vertex closo-carborane (CH2)3C2B12H12 (8). On the other hand, the reaction of [C6H4(CH2)2C2B10H10]Li4 with HBBr2.SMe2 generated only a 13-vertex closo-carborane 1,2-C6H4(CH2)2-1,2-C2B11H11 (9). Electrophilic substitution reactions of 2 with excess MeI, Br2, or I2 in the presence of a catalytic amount of AlCl3 produced the hexa-substituted 13-vertex carboranes 8,9,10,11,12,13-X6-1,2-(CH2)3-1,2-C2B11H5 (X = Me (10), Br (11), I (12)). The halogenated products 11 and 12 displayed unexpected instability toward moisture. The 13-vertex closo-carboranes were readily reduced by groups 1 and 2 metals. Accordingly, several 13-vertex nido-carborane dianionic salts [nido-1,2-(CH2)3-1,2-C2B11H11][Li2(DME)2(THF)2] (13), [[nido-1,2-(CH2)3-1,2-C2B11H11][Na2(THF)4]]n (13a), [[nido-1,2-(CH2)3-3-Ph-1,2-C2B11H10][Na2(THF)4]]n (14), [[nido-1,2-C6H4(CH2)2-1,2-C2B11H11][Na2(THF)4]]n (15), and [nido-1,2-(CH2)3-1,2-C2B11H11][M(THF)5] (M = Mg (16), Ca (17)) were prepared in good yields. These carbon-atom-adjacent nido-carboranes were not further reduced to the corresponding arachno species by lithium metal. On the other hand, like other nido-carborane dianions, they were useful synthons for the production of super-carboranes and supra-icosahedral metallacarboranes. Interactions of 13a with HBBr2.SMe2, (dppe)NiCl2, and (dppen)NiCl2 gave the 14-vertex carborane 8 and nickelacarboranes [eta5-(CH2)3C2B11H11]Ni(dppe) (18) and [eta5-(CH2)3C2B11H11]Ni(dppen) (19), respectively. All complexes were fully characterized by various spectroscopic techniques and elemental analyses. Some were further confirmed by single-crystal X-ray diffraction studies.  相似文献   

16.
A series of models for the active site (H-cluster) of the iron-only hydrogenase enzymes (Fe-only H2-ases) were prepared. Treatment of MeCN solutions of Fe2(SR)2(CO)6 with 2 equiv of Et4NCN gave [Fe2(SR)2(CN)2(CO)4](2-) compounds. IR spectra of the dicyanides feature four nu(CO) bands between 1965 and 1870 cm(-1) and two nu(CN) bands at 2077 and 2033 cm(-1). For alkyl derivatives, both diequatorial and axial-equatorial isomers were observed by NMR analysis. Also prepared were a series of dithiolate derivatives (Et4N)2[Fe2(SR)2(CN)2(CO)4], where (SR)2 = S(CH2)2S, S(CH2)3S. Reaction of Et4NCN with Fe2(S-t-Bu)2(CO)6 gave initially [Fe2(S-t-Bu)2(CN)2(CO)4](2-), which comproportionated to give [Fe2(S-t-Bu)2(CN)(CO)5](-). The mechanism of the CN(-)-for-CO substitution was probed as follows: (i) excess CN(-) with a 1:1 mixture of Fe2(SMe)2(CO)6 and Fe2(SC6H4Me)2(CO)6 gave no mixed thiolates, (ii) treatment of Fe2(S2C3H6)(CO)6 with Me3NO followed by Et4NCN gave (Et4N)[Fe2(S2C3H6)(CN)(CO)5], which is a well-behaved salt, (iii) treatment of Fe2(S2C3H6)(CO)6 with Et4NCN in the presence of excess PMe3 gave (Et4N)[Fe2(S2C3H6)(CN)(CO)4(PMe3)] much more rapidly than the reaction of PMe3 with (Et4N)[Fe2(S2C3H6)(CN)(CO)5], and (iv) a competition experiment showed that Et4NCN reacts with Fe2(S2C3H6)(CO)6 more rapidly than with (Et4N)[Fe2(S2C3H6)(CN)(CO)5]. Salts of [Fe2(SR)2(CN)2(CO)4](2-) (for (SR)2 = (SMe)2 and S2C2H4) and the monocyanides [Fe2(S2C3H6)(CN)(CO)5](-) and [Fe2(S-t-Bu)2(CN)(CO)5](-) were characterized crystallographically; in each case, the Fe-CO distances were approximately 10% shorter than the Fe-CN distances. The oxidation potentials for Fe2(S2C3H6)(CO)4L2 become milder for L = CO, followed by MeNC, PMe3, and CN(-); the range is approximately 1.3 V. In water,oxidation of [Fe2(S2C3H6)(CN)2(CO)4](2-) occurs irreversibly at -0.12 V (Ag/AgCl) and is coupled to a second oxidation.  相似文献   

17.
1 INTRODUCTION Constructing higher nuclearity clusters with well-defined dimensions and structures provide a rather active field of chemistry with potential applications in areas including nanotechnology, molecular recognition and catalysis[1~4]. A continuing effort has been directed toward developing a better methodology for systematic synthesis of supracluster compounds through molecular design [5,6]. On the basis of extensive investigation on the metal exchange reaction in cluster com…  相似文献   

18.
In attempts to produce a microporous magnet, two approaches were explored for expanding the Prussian blue structure type via incorporation of edge-bridged octahedral [Zr(6)ZCl(12)](2+) (Z = B, Be) cluster cores. Dissolution of Rb(5)Zr(6)BCl(18) and K(5)Zr(6)BeCl(15) in an acetonitrile solution of Et(4)N(CN) led to the isolation of (Et(4)N)(5)[Zr(6)BCl(12)(CN)(6)] (1) and (Et(4)N)(5)[Zr(6)BeCl(12)(CN)(6)].2MeCN.2THF (2), respectively. The crystal structure of 1.1.5MeCN revealed the expected cyano-terminated cluster complex with a trans-N...N span of 11.73(3) Angstroms. Unfortunately, both [Zr(6)ZCl(12)(CN)(6)](5-) clusters rapidly lose their cyanide ligands in aqueous solution making them ill-suited for solid-forming reactions with hydrated metal ions. Such outer-ligand exchange, however, allows the use of [Zr(6)BCl(18)](4-) in the synthesis of expanded Prussian blue-type solids through reactions with [Cr(CN)(6)](3-). The use of 2.2 M aqueous LiCl to stabilize the cluster during the reaction gave (Et(4)N)(2)[Zr(6)BCl(12)][Cr(CN)(6)]Cl.3H(2)O (3), while the use of 1 M acetic acid yielded (Et(4)N)(2)[Zr(6)BCl(12)][Cr(CN)(6)]Cl.2H(2)O.CH(3)CO(2)H (4). A Rietveld refinement against X-ray powder diffraction data collected for 3 confirmed the presence of a cubic Prussian blue framework structure, featuring alternating [Zr(6)BCl(12)](2+) cores and [Cr(CN)(6)](3-) anions. The temperature dependence of magnetization data obtained for 4 revealed activation of magnetic exchange interactions between the S = (1)/(2) cluster units and the S = (3)/(2) hexacyanochromate complexes below 10 K.  相似文献   

19.
The reaction of cyanogen chloride with [1-(4-C(7)H(7))-12-(C(5)H(3)-3,4-(CH(3))(2))-C(2)B(10)H(10)] (7) was found to yield two new C(5)-substituted carborane cluster-based compounds, [1-(4-C(7)H(7))-12-(C(5)H(2)-3-(CN)-3,4-(CH(3))(2))-C(2)B(10)H(10)] (8) and [1-(4-C(7)H(7))-12-(C(5)H-2,4-(CN)(2)-3,4-(CH(3))(2))-C(2)B(10)H(10)] (9). This cyano-substitution pattern is in contrast to the known substitution for the analogous organic quinarene[5.6.7] system. The observed unique cluster-based products may be understood by a combination of steric and electronic effects. Compounds 8 and 9 were characterized by complete multinuclear NMR, (1)H-(1)H COSY NMR, (1)H-(13)C HMQC NMR, FTIR, UV-Vis, IR, MS data and a single crystal analysis for 8 [X-ray data for 8: C(17)H(25)B(10)N, monoclinic, space group P2(1)/n with cell constants a = 8.6794(17) ?, b = 11.021(2) ?, c = 43.175(9) ?, β = 91.00(3)°, V = 4129.2(14) ?(3), Z = 8, R(1) = 0.0729, wR(2) = 0.1464].  相似文献   

20.
The interaction of lower rim calix(4)arene derivatives containing ester (1) and ketone (2) functional groups and bivalent (alkaline-earth, transition- and heavy-metal) cations has been investigated in various solvents (methanol, N,N-dimethylformamide, acetonitrile, and benzonitrile). Thus, 1H NMR studies in CD3OD, C3D7NO, and CD3CN show that the interaction of these ligands with bivalent cations (Mg2+, Ca2+, Sr2+, Ba2+, Hg2+, Pb2+, Cd2+) is only observed in CD3CN. These findings are corroborated by conductance measurements in these solvents including benzonitrile, where changes upon the addition of the appropriate ligand (1 or 2) to the metal-ion salt only occur in acetonitrile. Thus, in this solvent, plots of molar conductance against the ligand/metal cation ratio reveal the formation of 1:1 complexes between these ligands and bivalent cations. Four metal-ion complex salts resulting from the interaction of 1 and 2 with cadmium and lead, respectively, were isolated and characterized by X-ray crystallography. All four structures show an acetonitrile molecule sitting in the hydrophobic cavity of the ligand. The mode of interaction of the neutral guest in the cadmium(II) complexes differs from each other and from that found in the lead(II) complexes and provides evidence of the versatile behavior of acetonitrile in binding processes involving calix(4)arene derivatives. The thermodynamics of complexation of these ligands and bivalent cations in acetonitrile is reported. Thus, the selective behavior of 1 and 2 for bivalent cations is for the first time demonstrated. The role of acetonitrile in the complexation process in solution is discussed on the basis of 1H NMR and X-ray crystallographic studies. It is suggested that the complexation of 1 and 2 with bivalent cations is likely to involve the ligand-solvent adducts rather than the free ligand. Plots of complexation Gibbs energies against the corresponding data for cation hydration show a selectivity peak which is explained in terms of the predominant role played by cation desolvation and ligand binding energy in complex formation involving metal cations and macrocycles in solution. A similar peak is found in terms of enthalpy suggesting that for most cations (except Mg2+) the selectivity is enthalpically controlled. The ligand effect on the complexation process is quantitatively assessed. Final conclusions are given highlighting the role of the solvent in complexation processes involving calix(4)arene derivatives and metal cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号