首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A graph X is said to be distance-balanced if for any edge uv of X, the number of vertices closer to u than to v is equal to the number of vertices closer to v than to u. A graph X is said to be strongly distance-balanced if for any edge uv of X and any integer k, the number of vertices at distance k from u and at distance k+1 from v is equal to the number of vertices at distance k+1 from u and at distance k from v. Exploring the connection between symmetry properties of graphs and the metric property of being (strongly) distance-balanced is the main theme of this article. That a vertex-transitive graph is necessarily strongly distance-balanced and thus also distance-balanced is an easy observation. With only a slight relaxation of the transitivity condition, the situation changes drastically: there are infinite families of semisymmetric graphs (that is, graphs which are edge-transitive, but not vertex-transitive) which are distance-balanced, but there are also infinite families of semisymmetric graphs which are not distance-balanced. Results on the distance-balanced property in product graphs prove helpful in obtaining these constructions. Finally, a complete classification of strongly distance-balanced graphs is given for the following infinite families of generalized Petersen graphs: GP(n,2), GP(5k+1,k), GP(3k±3,k), and GP(2k+2,k).  相似文献   

2.
A connected graph Γ is said to be distance-balanced whenever for any pair of adjacent vertices u,v of Γ the number of vertices closer to u than to v is equal to the number of vertices closer to v than to u. In [K. Handa, Bipartite graphs with balanced (a,b)-partitions, Ars Combin.51 (1999), 113-119] Handa asked whether every bipartite distance-balanced graph, that is not a cycle, is 3-connected. In this paper the Handa question is answered in the negative. Moreover, we show that a minimal bipartite distance-balanced graph, that is not a cycle and is not 3-connected, has 18 vertices and is unique. In addition, we give a complete classification of non-3-connected bipartite distance-balanced graphs for which the minimal distance between two vertices in a 2-cut is three. All such graphs are regular and for each k≥3 there exists an infinite family of such graphs which are k-regular.Furthermore, we determine a number of structural properties that a bipartite distance-balanced graph, which is not 3-connected, must have. As an application, we give a positive answer to the Handa question for the subfamily of bipartite strongly distance-balanced graphs.  相似文献   

3.
Let G be a connected, undirected graph without loops and without multiple edges. For a pair of distinct vertices u and v, a minimum {u, v}-separating set is a smallest set of edges in G whose removal disconnects u and v. The edge connectivity of G, denoted λ(G), is defined to be the minimum cardinality of a minimum {u, v}-separating set as u and v range over all pairs of distinct vertices in G. We introduce and investigate the eavesdropping number, denoted ε(G), which is defined to be the maximum cardinality of a minimum {u, v}-separating set as u and v range over all pairs of distinct vertices in G. Results are presented for regular graphs and maximally locally connected graphs, as well as for a number of common families of graphs.  相似文献   

4.
A magnet is a pair u, v of adjacent vertices such that the proper neighbours of u are completely linked to the proper neighbours of v. It has been shown that one can reduce the graph by removing the two vertices u, v of a magnet and introducing a new vertex linked to all common neighbours of u and v without changing the stability number. We prove that all graphs containing no chordless cycle C k (k ≥ 5) and none of eleven forbidden subgraphs can be reduced to a stable set by repeated use of magnets. For such graphs a polynomial algorithm is given to determine the stability number.  相似文献   

5.
An interval-regular graph is a connected graph in which, for any two vertices u and v, the number of neighbours of u on all shortest (u, v)-paths equals d(u, v). It is proved that in an interval-regular graph the shortest (u, v)-paths induce a hypercube of dimension d(u, v), for any two vertices u and v. The products of complete graphs are characterized as interval-regular graphs satisfying some extra conditions. The extended odd graphs are introduced as critical example with respect to the results proved.  相似文献   

6.
The Wiener index of a graph G is defined as W(G)=∑ u,v d G (u,v), where d G (u,v) is the distance between u and v in G and the sum goes over all the pairs of vertices. In this paper, we first present the 6 graphs with the first to the sixth smallest Wiener index among all graphs with n vertices and k cut edges and containing a complete subgraph of order nk; and then we construct a graph with its Wiener index no less than some integer among all graphs with n vertices and k cut edges.  相似文献   

7.
Vertices u and v of a graph X are pseudo-similar if X ? u ? X ? v but no automorphism of X maps u to v. We describe a group-theoretic method for constructing graphs with a set of three mutually pseudo-similar vertices. The method is used to construct several examples of such graphs. An algorithm for extending, in a natural way, certain graphs with three mutually pseudo-similar vertices to a graph in which the three vertices are similar is given. The algorithm suggests that no simple characterization of graphs with a set of three mutually pseudo-similar vertices can exist.  相似文献   

8.
A connected graph is said to be unoriented Laplacian maximizing if the spectral radius of its unoriented Laplacian matrix attains the maximum among all connected graphs with the same number of vertices and the same number of edges. A graph is said to be threshold (maximal) if its degree sequence is not majorized by the degree sequence of any other graph (and, in addition, the graph is connected). It is proved that an unoriented Laplacian maximizing graph is maximal and also that there are precisely two unoriented Laplacian maximizing graphs of a given order and with nullity 3. Our treatment depends on the following known characterization: a graph G is threshold (maximal) if and only if for every pair of vertices u,v of G, the sets N(u)?{v},N(v)?{u}, where N(u) denotes the neighbor set of u in G, are comparable with respect to the inclusion relation (and, in addition, the graph is connected). A conjecture about graphs that maximize the unoriented Laplacian matrix among all graphs with the same number of vertices and the same number of edges is also posed.  相似文献   

9.
An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v,u,x,y) of vertices such that both (v,u,x) and (u,x,y) are paths of length two. The 3-arc graph of a given graph G, X(G), is defined to have vertices the arcs of G. Two arcs uv,xy are adjacent in X(G) if and only if (v,u,x,y) is a 3-arc of G. This notion was introduced in recent studies of arc-transitive graphs. In this paper we study diameter and connectivity of 3-arc graphs. In particular, we obtain sharp bounds for the diameter and connectivity of X(G) in terms of the corresponding invariant of G.  相似文献   

10.
Distance labeling schemes are schemes that label the vertices of a graph with short labels in such a way that the distance between any two vertices u and v can be determined efficiently (e.g., in constant or logarithmic time) by merely inspecting the labels of u and v, without using any other information. Similarly, routing labeling schemes are schemes that label the vertices of a graph with short labels in such a way that given the label of a source vertex and the label of a destination, it is possible to compute efficiently (e.g., in constant or logarithmic time) the port number of the edge from the source that heads in the direction of the destination. In this paper we show that the three major classes of non-positively curved plane graphs enjoy such distance and routing labeling schemes using O(log2n) bit labels on n-vertex graphs. In constructing these labeling schemes interesting metric properties of those graphs are employed.  相似文献   

11.
An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v,u,x,y) of vertices such that both (v,u,x) and (u,x,y) are paths of length two. The 3-arc graph of a graph G is defined to have the arcs of G as vertices such that two arcs uv,xy are adjacent if and only if (v,u,x,y) is a 3-arc of G. In this paper, we study the independence, domination and chromatic numbers of 3-arc graphs and obtain sharp lower and upper bounds for them. We introduce a new notion of arc-coloring of a graph in studying vertex-colorings of 3-arc graphs.  相似文献   

12.
Vertices u and v in the graph G are said to be pseudo-similar if G ? u ? G ? v but no automorphism of G maps u onto v. It is shown that a known procedure for constructing finite graphs with pairs of pseudo-similar vertices actually produces all such graphs. An additional procedure for constructing infinite graphs with pseudo-similar vertices is introduced and it is shown that all such graphs can be obtained by using either this or the first-mentioned method. The corresponding result for pseudo-similar edges is given.  相似文献   

13.
The most popular bounded-degree derivative network of the hypercube is the butterfly network. The Benes network consists of back-to-back butterflies. There exist a number of topological representations that are used to describe butterfly—like architectures. We identify a new topological representation of butterfly and Benes networks.The minimum metric dimension problem is to find a minimum set of vertices of a graph G(V,E) such that for every pair of vertices u and v of G, there exists a vertex w with the condition that the length of a shortest path from u to w is different from the length of a shortest path from v to w. It is NP-hard in the general sense. We show that it remains NP-hard for bipartite graphs. The algorithmic complexity status of this NP-hard problem is not known for butterfly and Benes networks, which are subclasses of bipartite graphs. By using the proposed new representations, we solve the minimum metric dimension problem for butterfly and Benes networks. The minimum metric dimension problem is important in areas such as robot navigation in space applications.  相似文献   

14.
A k-ranking of a graph G = (V, E) is a mapping ϕ: V → {1, 2, ..., k} such that each path with end vertices of the same colour c contains an internal vertex with colour greater than c. The ranking number of a graph G is the smallest positive integer k admitting a k-ranking of G. In the on-line version of the problem, the vertices v 1, v 2, ..., v n of G arrive one by one in an arbitrary order, and only the edges of the induced graph G[{v 1, v 2, ..., v i }] are known when the colour for the vertex v i has to be chosen. The on-line ranking number of a graph G is the smallest positive integer k such that there exists an algorithm that produces a k-ranking of G for an arbitrary input sequence of its vertices. We show that there are graphs with arbitrarily large difference and arbitrarily large ratio between the ranking number and the on-line ranking number. We also determine the on-line ranking number of complete n-partite graphs. The question of additivity and heredity is discussed as well.  相似文献   

15.
A shortest path connecting two vertices u and v is called a u-v geodesic. The distance between u and v in a graph G, denoted by dG(u,v), is the number of edges in a u-v geodesic. A graph G with n vertices is panconnected if, for each pair of vertices u,vV(G) and for each integer k with dG(u,v)?k?n-1, there is a path of length k in G that connects u and v. A graph G with n vertices is geodesic-pancyclic if, for each pair of vertices u,vV(G), every u-v geodesic lies on every cycle of length k satisfying max{2dG(u,v),3}?k?n. In this paper, we study sufficient conditions of geodesic-pancyclic graphs. In particular, we show that most of the known sufficient conditions of panconnected graphs can be applied to geodesic-pancyclic graphs.  相似文献   

16.
The geodesic and induced path transit functions are the two well-studied interval functions in graphs. Two important transit functions related to the geodesic and induced path functions are the triangle path transit functions which consist of all vertices on all u,v-shortest (induced) paths or all vertices adjacent to two adjacent vertices on all u,v-shortest (induced) paths, for any two vertices u and v in a connected graph G. In this paper we study the two triangle path transit functions, namely the IΔ and JΔ on G. We discuss the betweenness axioms, for both triangle path transit functions. Also we present a characterization of pseudo-modular graphs using the transit function IΔ by forbidden subgraphs.  相似文献   

17.
The center of a graph is the set of vertices with minimum eccentricity. Graphs in which all vertices are central are called self-centered graphs. In this paper almost self-centered (ASC) graphs are introduced as the graphs with exactly two non-central vertices. The block structure of these graphs is described and constructions for generating such graphs are proposed. Embeddings of arbitrary graphs into ASC graphs are studied. In particular it is shown that any graph can be embedded into an ASC graph of prescribed radius. Embeddings into ASC graphs of radius two are studied in more detail. ASC index of a graph G is introduced as the smallest number of vertices needed to add to G such that G is an induced subgraph of an ASC graph.  相似文献   

18.
In 1960 Ore proved the following theorem: Let G be a graph of order n. If d(u) + d(v)≥n for every pair of nonadjacent vertices u and v, then G is hamiltonian. Since then for several other graph properties similar sufficient degree conditions have been obtained, so‐called “Ore‐type degree conditions”. In [R. J. Faudree, R. H. Schelp, A. Saito, and I. Schiermeyer, Discrete Math 307 (2007), 873–877], Faudree et al. strengthened Ore's theorem as follows: They determined the maximum number of pairs of nonadjacent vertices that can have degree sum less than n (i.e. violate Ore's condition) but still imply that the graph is hamiltonian. In this article we prove that for some other graph properties the corresponding Ore‐type degree conditions can be strengthened as well. These graph properties include traceable graphs, hamiltonian‐connected graphs, k‐leaf‐connected graphs, pancyclic graphs, and graphs having a 2‐factor with two components. Graph closures are computed to show these results. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 314–323, 2012  相似文献   

19.
We prove that a 2-connected graph G of order p is hamiltonian if for all distinct vertices u and v, dist(u,v) = 2 implies that |N(u) U N(v)| ? (2p - 1)/3. We also demonstrate hamiltonian-connected and traceability properties in graphs under similar conditions.  相似文献   

20.
A vertex v is a boundary vertex of a connected graph G if there exists a vertex u such that no neighbor of v is further away from u than v. Moreover, if no vertex in the whole graph V(G) is further away from u than v, then v is called an eccentric vertex of G. A vertex v belongs to the contour of G if no neighbor of v has an eccentricity greater than the eccentricity of v. Furthermore, if no vertex in the whole graph V(G) has an eccentricity greater than the eccentricity of v, then v is called a peripheral vertex of G. This paper is devoted to study these kinds of vertices for the family of chordal graphs. Our main contributions are, firstly, obtaining a realization theorem involving the cardinalities of the periphery, the contour, the eccentric subgraph and the boundary, and secondly, proving both that the contour of every chordal graph is geodetic and that this statement is not true for every perfect graph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号