共查询到3条相似文献,搜索用时 15 毫秒
1.
Sandra Cohen Michael DoumposEvi Neofytou Constantin Zopounidis 《European Journal of Operational Research》2012,218(1):270-279
The goal of this paper is to build an operational model for evaluating the financial viability of local municipalities in Greece. For this purpose, a multicriteria methodology is implemented combining a simulation analysis approach (stochastic multicriteria acceptability analysis) with a disaggregation technique. In particular, an evaluation model is developed on the basis of accrual financial data from 360 Greek municipalities for 2007. A set of customized to the local government context financial ratios is defined that rate municipalities and distinguish those with good financial condition from those experiencing financial problems. The model’s results are analyzed on the 2007 data as well as on a subsample of 100 local governments in 2009. The model succeeded in correctly classifying distressed municipalities according to a benchmark set by the central government in 2010. Such a model and methodology could be particularly useful for performance assessment in the context of several European Union countries that have a similar local government framework to the Greek one and apply accrual accounting techniques. 相似文献
2.
Electre is an important outranking method developed in the area of decision-aiding. Data mining is a vital developing technique that receives contributions from lots of disciplines such as databases, machine learning, information retrieval, statistics, and so on. Techniques in outranking approaches, e.g. Electre, could also contribute to the development of data mining. In this research, we address the following two issues: a) why and how to combine Electre with case-based reasoning (CBR) to generate corresponding hybrid models by extending the fundamental principles of Electre into CBR; b) the effect on predictive performance by employing evidence vetoing the assertion on the base of evidence supporting the assertion. The similarity measure of CBR is implemented by revising and fulfilling three basic ideas of Electre, i.e. assertion that two cases are indifferent, evidence supporting the assertion, and evidence vetoing the assertion. Two corresponding CBR models are constructed by combining principles of the Electre decision-aiding method with CBR. The first one, named Electre-CBR-I, derives from evidence supporting the assertion. The other one, named Electre-CBR-II, derives from both evidence supporting and evidence vetoing the assertion. Leave-one-out cross-validation and hold-out method are integrated to form 30-times hold-out method. In financial distress mining, data was collected from Shanghai and Shenzhen Stock Exchanges, ANOVA was employed to select features that are significantly different between companies in distress and health, 30-times hold-out method was used to assess predictive performance, and grid-search technique was utilized to search optimal parameters. Original data distributions were kept in the experiment. Empirical results of long-term financial distress prediction with 30 initial financial ratios and 135 initial pairs of samples indicate that Electre-CBR-I outperforms Electre-CBR-II and other comparative CBR models, and Electre-CBR-II outperforms the other comparative CBR models. 相似文献
3.
The insurance industry is concerned with many problems of interest to the operational research community. This paper presents a case study involving two such problems and solves them using a variety of techniques within the methodology of data mining. The first of these problems is the understanding of customer retention patterns by classifying policy holders as likely to renew or terminate their policies. The second is better understanding claim patterns, and identifying types of policy holders who are more at risk. Each of these problems impacts on the decisions relating to premium pricing, which directly affects profitability. A data mining methodology is used which views the knowledge discovery process within an holistic framework utilising hypothesis testing, statistics, clustering, decision trees, and neural networks at various stages. The impacts of the case study on the insurance company are discussed. 相似文献