首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The connection between the compressible viscous quantum magnetohydrodynamic model with low Mach number and the ideal incompressible magnetohydrodynamic equations is studied in a periodic domain. More precisely, for well‐prepared initial data, we prove the convergence of classical solutions of the compressible viscous quantum magnetohydrodynamic model to the classical solutions of the incompressible ideal magnetohydrodynamic equations with a convergence rate when the Mach number, viscosity coefficient, and magnetic diffusion coefficient simultaneously tend to zero.  相似文献   

2.
In this paper, we prove a blow-up criterion of strong solutions to the 3-D viscous and non-resistive magnetohydrodynamic equations for compressible heat-conducting flows with initial vacuum. This blow-up criterion depends only on the gradient of velocity and the temperature, which is similar to the one for compressible Navier-Stokes equations.  相似文献   

3.
This paper is concerned with the zero Mach number limit of the three-dimension- al compressible viscous magnetohydrodynamic equations. More precisely, based on the local existence of the three-dimensional compressible viscous magnetohydrodynamic equations, first the convergence-stability principle is established. Then it is shown that, when the Mach number is sufficiently small, the periodic initial value problems of the equations have a unique smooth solution in the time interval, where the incompressible viscous magnetohydrodynamic equations have a smooth solution. When the latter has a global smooth solution, the maximal existence time for the former tends to infinity as the Mach number goes to zero. Moreover, the authors prove the convergence of smooth solutions of the equations towards those of the incompressible viscous magnetohydrodynamic equations with a sharp convergence rate.  相似文献   

4.
We consider the compressible magnetohydrodynamic (MHD) equations with nonnegative thermal conductivity or infinite electric conductivity. We prove the existence of unique local strong solutions for all initial data satisfying some compatibility condition. The initial density need not be positive and may vanish in an open set.  相似文献   

5.
In this paper, we prove a blow-up criterion of strong solutions to the 3D viscous and non-resistive isentropic compressible magnetohydrodynamic equations with initial vacuum. This blow-up criterion depends only on the gradient of velocity, which is analogous to the one for the compressible Navier–Stokes equations (cf. Huang et al. (2010) [40]).  相似文献   

6.
This paper concerns the Cauchy problem of the two-dimensional full compressible magnetohydrodynamic equations with zero heat-conduction and vacuum as far field density. In particular, the initial density can have compact support. We prove that the Cauchy problem admits a local strong solution provided both the initial density and the initial magnetic field decay not too slow at infinity.  相似文献   

7.
This paper is devoted to the study of the weak-strong uniqueness property for full compressible magnetohydrodynamics flows. The governing equations for magnetohydrodynamic flows are expressed by the full Navier-Stokes system for compressible fluids enhanced by forces due to the presence of the magnetic field as well as the gravity and an additional equation which describes the evolution of the magnetic field. Using the relative entropy inequality, we prove that a weak solution coincides with the strong solution, emanating from the same initial data, as long as the latter exists.  相似文献   

8.
In this paper, we are concerned with Cauchy problem for the multi-dimensional (N ≥ 3) non-isentropic full compressible magnetohydrodynamic equations. We prove the existence and uniqueness of a global strong solution to the system for the initial data close to a stable equilibrium state in critical Besov spaces. Our method is mainly based on the uniform estimates in Besov spaces for the proper linearized system with convective terms.  相似文献   

9.
The compactness of weak solutions to the magnetohydrodynamic equations for the viscous, compressible, heat conducting fluids is considered in both the three-dimensional space R3 and the three-dimensional periodic domains. The viscosities, the heat conductivity as well as the magnetic coefficient are allowed to depend on the density, and may vanish on the vacuum. This paper provides a different idea from [X. Hu, D. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys. (2008), in press] to show the compactness of solutions of viscous, compressible, heat conducting magnetohydrodynamic flows, derives a new entropy identity, and shows that the limit of a sequence of weak solutions is still a weak solution to the compressible magnetohydrodynamic equations.  相似文献   

10.
In this paper, we consider the compressible models of magnetohydrodynamic flows giving rise to a variety of mathematical problems in many areas. We derive a rigorous quasi-geostrophic equation governed by magnetic field from the rotational compressible magnetohydrodynamic flows with the well-prepared initial data. It is a first derivation of quasi-geostrophic equation governed by the magnetic field, and the tool is based on the relative entropy method. This paper covers two results: the existence of the unique local strong solution of quasi-geostrophic equation with the good regularity and the derivation of a quasi-geostrophic equation.  相似文献   

11.
In this paper, we study the 3D compressible magnetohydrodynamic equations. We obtain a blow up criterion for the local strong solutions just in terms of the gradient of the velocity, similar to the Beal-Kato-Majda criterion (see J.T. Beal, T. Kato and A. Majda (1984) [1]) for the ideal incompressible flow. In addition, initial vacuum is allowed in our case.  相似文献   

12.
In this paper, we study the incompressible limit of the three-dimensional compressible magnetohydrodynamic equations, which models the dynamics of compressible quasi-neutrally ionized fluids under the influence of electromagnetic fields. Based on the convergence-stability principle, we show that, when the Mach number, the shear viscosity coefficient, and the magnetic diffusion coefficient are sufficiently small, the initial-value problem of the model has a unique smooth solution in the time interval where the ideal incompressible magnetohydrodynamic equations have a smooth solution. When the latter has a global smooth solution, the maximal existence time for the former tends to infinity as the Mach number, the shear viscosity coefficient, and the magnetic diffusion coefficient go to zero. Moreover, we obtain the convergence of smooth solutions for the model forwards those for the ideal incompressible magnetohydrodynamic equations with a sharp convergence rate.  相似文献   

13.
In this paper, we investigate the large-time behavior of strong solutions to the Cauchy problem for one-dimensional compressible isentropic magnetohydrodynamic equations near a stable equilibrium. The difference between the one-dimensional and multi-dimensional cases is a feature for compressible flows and also brings new difficulties. In contrast to the multi-dimensional case, the decay rates of nonlinear terms may not be faster than linear terms in dimension one. To handle this, we shall prese...  相似文献   

14.
We study the compressible magnetohydrodynamic equations in a bounded smooth domain in ${{\mathbb{R}}^2}$ with perfectly conducting boundary, and prove the global existence and uniqueness of smooth solutions around a rest state. Moreover, the low Mach limit of the solutions is verified for all time, provided that the initial data are well prepared.  相似文献   

15.
We investigate the zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system.We justify this singular limit rigorously in the framework of smooth solutions and obtain the nonisentropic compressible magnetohydrodynamic equations as the dielectric constant tends to zero.  相似文献   

16.
In this paper, we study the isentropic compressible planar magnetohydrodynamic equations with viscosity depending on density and with free boundaries. Precisely, when the viscosity coefficient λ(ρ) is proportional to ρθ with θ > 0, where ρ is the density, we establish the existence of global solutions under certain assumptions on the initial data by deriving some new a priori estimates.  相似文献   

17.
In this paper, we are concerned with the global existence and convergence rates of the smooth solutions for the compressible magnetohydrodynamic equations without heat conductivity, which is a hyperbolic-parabolic system. The global solutions are obtained by combining the local existence and a priori estimates if H3-norm of the initial perturbation around a constant states is small enough and its L1-norm is bounded. A priori decay-in-time estimates on the pressure, velocity and magnetic field are used to get the uniform bound of entropy. Moreover, the optimal convergence rates are also obtained.  相似文献   

18.
In this paper, we consider the combined quasineutral and low Mach number limit of compressible Euler–Poisson system coupled to a magnetic field. We prove that, as the Debye length and the Mach number tend to zero simultaneously in some way, the solution of compressible Euler–Poisson system coupled to a magnetic field will converge to that of ideal incompressible magnetohydrodynamic equations with a sharp convergence rate.  相似文献   

19.
In this paper, we establish a blow‐up criterion for the three‐dimentional viscous, compressible magnetohydrodynamic flows. It is shown that for the Cauchy problem and the initial‐boundary‐value problem with initial density allowed to vanish, the strong or smooth solution for the three‐dimentional magnetohydrodynamic flows exists globally if the density, temperature, and magnetic field is bounded from above. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
We use a pure energy method recently developed by Guo and Wang to prove the optimal time decay rates of the solutions to the compressible magnetohydrodynamic equations in the whole space. In particular, the optimal decay rates of the higher-order spatial derivatives of solutions are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号