首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photochemical profiles of beta-bond dissociation in highly excited triplet states (Tn) of biphenyl derivatives having C-O bonds were investigated in solution, using stepwise laser photolysis techniques. The lowest triplet states (T1) were produced by triplet sensitization of acetone (Ac) upon 308-nm laser photolysis. The molar absorption coefficients of the T1 states were determined using triplet sensitization techniques. Any photochemical reactions were absent in the T1 states. Upon 355-nm laser flash photolysis of the T1 states, they underwent fragmentation, because of homolysis of the C-O bond in the Tn states from the observations of the transient absorption of the corresponding radicals. The quantum yields (Phidec) for the decomposition of the T1 states upon the second 355-nm laser excitation were determined. Based on the Phidec values and the bond dissociation energies (BDEs) for the C-O bond fission, the state energies (ERT) of the reactive highly excited triplet states (TR) were determined. It was revealed that (i) the Phidec was related to the energy difference (DeltaE) between the BDE and the ERT, and (ii) the rate (kdis) of beta-cleavage in the TR state was formulated as being simply proportional to DeltaE. The reaction mechanism for beta-bond cleavage in the TR states was discussed.  相似文献   

2.
Stepwise photocleavage of naphthylmethyl-oxygen (C-O) bonds of mono(substituted-methyl)naphthalenes [1- and 2-ROCH2Np, R = 4-benzoylphenyl (BP), phenyl (Ph), and methyl (CH3)] and bis(substituted-methyl)naphthalenes [1,8-(ROCH2)2Np and 1,4-(ROCH2)2Np, R = BP and Ph] was observed to give the naphthylmethyl radicals (NpCH2* or ROCH2NpCH2*) in almost 100% yield with two-step or three-step excitation by the two-color two-laser or three-color three-laser irradiation, respectively, at room temperature. The C-O bond cleavage quantum yields of 1-PhOCH2Np, 2-PhOCH2Np, 1,8-(PhOCH2)2Np, and 1,4-(PhOCH2)2Np were higher than those of 1-BPOCH2Np, 2-BPOCH2Np, 1,8-(BPOCH2)2Np, and 1,4-(BPOCH2)2Np. No C-O bond cleavage occurred from 1,8-(HOCH2)2Np and 2-CH3OCH2Np in the higher triplet excited state (T(n)). The experimental results show that the C-O bond cleavage was determined not only by the position of the substituents on Np but also by the type of the substituents. The C-O bond cleavage of 1-ROCH2Np was more efficient than that of 2-ROCH2Np. In the case of 1,8-(ROCH2)2Np and 1,4-(ROCH2)2Np (R = BP and Ph), the first C-O bond cleavage from the T(n) states occurred to give ROCH2-substituted naphthylmethyl radicals (1,8- and 1,4-ROCH2NpCH2*) when the T1 states, generated with the 308-nm first laser irradiation, were excited using the 430-nm second laser. The second C-O bond cleavage occurred when 1,8- and 1,4-ROCH2NpCH2* in the ground state [1,8- and 1,4-ROCH2NpCH2*(D0)] were excited to the excited states [1,8- and 1,4-ROCH2NpCH2*(D(n))] using the third 355-nm laser during the three-color three-laser flash photolysis at room temperature. It was revealed that acenaphthene was produced as the final product during the stepwise C-O bond cleavages of 1,8-(BPOCH2)2Np and 1,8-(PhOCH2)2Np. This is a successful example of stepwise cleavage of two equivalent C-O bonds in a molecule using the three-color three-laser photolysis method.  相似文献   

3.
The C-O bond cleavage from benzophenone substituted with 4-CH2OR (p-BPCH2OR, 1-3), such as p-phenoxymethylbenzophenone (1, R= C6H5) and p-methoxymethylbenzophenone (2, R= CH3), occurred by a stepwise two-photon excitation during two-color, two-laser flash photolysis. On the other hand, no C-O bond cleavage occurred from p-hydroxymethylbenzophenone (3, R = H). The first 355-nm laser excitation of 1-3 generates p-BPCH2OR in the lowest triplet excited state (T1) which has an absorption at 532 nm. When p-BPCH2OR(T1) is excited with the second 532-nm laser to p-BPCH2OR in the higher triplet excited state (T(n)), the C-O bond cleavage occurred within the laser flash duration of 5 ns. The quantum yields of the C-O bond cleavage during the second 532-nm laser irradiation were found to be 0.015 +/- 0.007 and 0.007 +/- 0.003 for 1 and 2, respectively. Although these values are low, the diminishing 1(T1) or 2(T1) was found to convert, in almost 100% yield, to phenoxyl (C6H5O*) and p-benzoylbenzyl (BPCH2*) radicals or methoxyl (CH3O*) and BPCH2* radicals, respectively. The T(n) excitation energy, the energy barrier along the potential surface between the T(n) states and product radicals, and delocalization of the T(n) state molecular orbital including BP and CH2OR (R = C6H5, CH3, H) moieties are important factors for the occurrence of the C-O bond cleavage. It is found that the C-O bond cleavage and production of free radicals, such as BPCH2*, C6H5O*, and CH3O*, can be performed by a stepwise two-photon excitation. The present study is an example in which the chemical reactions can be selectively initiated from the T(n) state but not from the S1 and T1 states.  相似文献   

4.
Stepwise photocleavage of two naphthylmethyl-oxygen bonds of 1,8-bis[(4-benzoylphenoxy)methyl]naphthalene (1,8-(BPO-CH2)2Np, 1) was observed during three-color, three-laser flash photolysis at room temperature. The mechanism from 1 to the final product, acenaphthene (2), was clearly elucidated. The first (308 nm, 5 mJ pulse-1) XeCl laser excited 1 to the lowest triplet excited state 1(T1), in which the excited energy was localized in the naphthalene moiety, but the C-O bond cleavage did not occur. The second (430 nm, 7 mJ pulse-1) OPO laser excited 1(T1) to the higher triplet excited states 1(Tn) in which the excited energy is delocalized in the naphthalene moiety and C-O bonds, and one C-O bond cleavage occurred. The third (355 nm, 10 mJ pulse-1) YAG laser excited the carbon-centered radical in the ground state 1-(BPO-CH2)NpCH2*(D0) to its excited states 1-(BPO-CH2)NpCH2*(Dn), from which the second C-O bond cleavage occurred to give 2 as the final product. This is a successful example of stepwise cleavage of two equivalent C-O bonds in a molecule using three-color three-laser photolysis method.  相似文献   

5.
Photochemical properties of photoinduced omega-bond dissociation in naphthyl phenyl ketones having a phenylthiyl moiety as a leaving group, p-(alpha-naphthoyl)benzyl phenyl sulfide (NBPS) and 4-benzoyl-1-naphthylmethyl phenyl sulfide (BNMPS), in solution were investigated by laser flash photolysis techniques. Both ketones were shown to undergo photoinduced omega-bond cleavage of the C-S bond to release the phenyl thiyl radical (PTR) at room temperature. Irrespective of excitation wavelengths of NBPS, a quantum yield (Phi(rad)) of the PTR formation was obtained to be 0.1, whereas that for BNMPS was found to depend on the excitation wavelength, i.e., absorption bands from the ground state (S0) to the excited singlet states, S3, S2, and S1 of BNMPS; Phi(rad)(S3) = 0.77 and Phi(rad)(S2) = Phi(rad)(S1) = 1.0. By using triplet sensitization of p-phenylbenzophenone (PBP), efficiencies (alpha(rad)) of the radical formation in the lowest triplet state (T1(pi,pi*)) of NBPS and BNMPS were determined to be 0 and 1.0, respectively. The agreement between Phi(rad)(S1) and alpha(rad) values for BNMPS indicates that the C-S bond dissociation occurs in the T1 state via the S1 state via a fast intersystem crossing from the S1 to the T1 state. The wavelength dependence of the radical yields upon direct excitation of BNMPS was interpreted in terms of the C-S bond cleavage in the S3 state competing with internal conversion from the S3 to the S2 state. The smaller value of Phi(rad)(S3) than those of Phi(rad)(S1) and Phi(rad)(S2) was proposed to originate from the geminate recombination of singlet radical pairs produced by the bond dissociation via the S3 state. Photoinduced omega-cleavage of NBPS was concluded to take place only in the S1(n,pi*) state. Difference in reactivity of omega-cleavage between the triplet states of NBPS and BNMPS was interpreted in terms of localized triplet exciton in the naphthoyl moieties.  相似文献   

6.
Photochemical properties of photoinduced omega-bond dissociation in p-benzoylbenzyl phenyl sulfide (BBPS) in solution were investigated by time-resolved EPR and laser flash photolysis techniques. BBPS was shown to undergo photoinduced omega-bond cleavage to yield the p-benzoylbenzyl radical (BBR) and phenyl thiyl radical (PTR) at room temperature. The quantum yield (phi(rad)) for the radical formation was found to depend on the excitation wavelength, i.e., on the excitation to the excited singlet states, S2 and S1 of BBPS; phi(rad)(S2) = 0.65 and phi(rad)(S1) = 1.0. Based on the CIDEP data, these radicals were found to be produced via the triplet state independent of excitation wavelength. By using triplet sensitization of xanthone, the efficiency (alpha(rad)) of the C-S bond fission in the lowest triplet state (T1) of BBPS was determined to be unity. The agreement between phi(rad)(S1) and alpha(rad) values indicates that the C-S bond dissociation occurs in the T1 state via the S1 state due to a fast intersystem crossing from the S1 to the T1 state. In contrast, the wavelength dependence of the radical yields was interpreted in terms of the C-S bond cleavage in the S2 state competing with internal conversion from the S2 to the S1 state. The smaller value of phi(rad)(S2) than that of phi(rad)(S1) was proposed to originate from the geminate recombination of singlet radical pairs produced by the bond dissociation via the S2 state. Considering the electronic character of the excited and dissociative states in BBPS showed a schematic energy diagram for the omega-bond dissociation of BBPS.  相似文献   

7.
The 3-cyano-N-methylquinolinium perchlorate (3-CN-NMQ(+)ClO4(-))-photosensitized oxidation of phenyl alkyl sulfoxides (PhSOCR1R2R3, 1, R1 = R2 = H, R3 = Ph; 2, R1 = H, R2 = Me, R3 = Ph; 3, R1 = R2 = Ph, R3 = H; 4, R1 = R2 = Me, R3 = Ph; 5, R1 = R2 = R3 = Me) has been investigated by steady-state irradiation and nanosecond laser flash photolysis (LFP) under nitrogen in MeCN. Steady-state photolysis showed the formation of products deriving from the heterolytic C-S bond cleavage in the sulfoxide radical cations (alcohols, R1R2R3COH, and acetamides, R1R2R3CNHCOCH3) accompanied by sulfur-containing products (phenyl benzenethiosulfinate, diphenyl disulfide, and phenyl benzenethiosulfonate). By laser irradiation, the formation of 3-CN-NMQ(*) (lambda(max) = 390 nm) and sulfoxide radical cations 1(*+) , 2(*+), and 5(*+) (lambda(max) = 550 nm) was observed within the laser pulse. The radical cations decayed by first-order kinetics with a process attributable to the heterolytic C-S bond cleavage leading to the sulfinyl radical and an alkyl carbocation. The radical cations 3(*+) and 4(*+) fragment too rapidly, decaying within the laser pulse. The absorption band of the cation Ph2CH(+) (lambda(max) = 440 nm) was observed with 3 while the absorption bands of 3-CN-NMQ(*) and PhSO(*) (lambda(max) = 460 nm) were observed just after the laser pulse in the LFP experiment with 4. No competitive beta-C-H bond cleavage has been observed in the radical cations from 1-3. The C-S bond cleavage rates were measured for 1(*+), 2(*+), and 5(*+). For 3(*+) and 4(*+), only a lower limit (ca. >3 x 10(7) s(-1)) could be given. Quantum yields (Phi) and fragmentation first-order rate constants (k) appear to depend on the structure of the alkyl group and on the bond dissociation free energy (BDFE) of the C-S bond of the radical cations determined by a thermochemical cycle using the C-S BDEs for the neutral sulfoxides 1-5 obtained by DFT calculations. Namely, Phi and k increase as the C-S BDFE becomes more negative, that is in the order 1 < 5 < 2 < 3, 4, which is also the stability order of the alkyl carbocations formed in the cleavage. An estimate of the difference in the C-S bond cleavage rate between sulfoxide and sulfide radical cations was possible by comparing the fragmentation rate of 5(*+) (1.4 x 10(6) s(-1)) with the upper limit (10(4) s(-1)) given for tert-butyl phenyl sulfide radical cation (Baciocchi, E.; Del Giacco, T.; Gerini, M. F.; Lanzalunga, O. Org. Lett. 2006, 8, 641-644). It turns out that sulfoxide radical cations undergo C-S bond breaking at a rate at least 2 orders of magnitude faster than that of corresponding sulfide radical cations.  相似文献   

8.
采用密度泛函理论B3P86方法,在6-31G(d,p)基组水平上,对木质素结构中的6种连接方式(β-O-4、α-O-4、4-O-5、β-1、α-1、5-5)的63个木质素模化物的醚键(C-O)和C-C键的键离解能EB进行了理论计算研究。分析了不同取代基对键离解能的影响以及键长与键离解能的相关性。计算结果表明,C-O键的键离解能通常比C-C键的小,在各种醚键中Cα-O键的平均键离解能最小,为182.7 kJ/mol;其次是β-O-4连接中的Cβ-O键,苯环和烷烃基上的取代基对醚键的键离解能有较强的弱化作用,C-O键的键长和键离解能的相关性较差。与C-O键相比,C-C键的键离解能受苯环上取代基的影响很小,而烷烃基上的取代基对C-C键的键离解能有较大的影响,C-C键的键离解能和键长之间存在较强的线性关系,C-C键的键长越长,其键离解能越小。  相似文献   

9.
A C-O-bond cleavage of esters having a naphthyl group, NpCO-OR and RCO-ONp (Np=alpha- and beta-naphthyl ((alpha)Np and (beta)Np, respectively), R=Ph and Me), was found during the two-color two-laser flash photolysis in acetonitrile. The C-O-bond cleavage occurred when NpCO-OR and RCO-ONp were excited to the singlet excited states (S1). On the other hand, no reaction occurred from the lowest triplet excited states (T1). When NpCO-OR(T1) and RCO-ONp(T1) were excited to the higher triplet excited states (Tn) using the second laser during the two-color two-laser flash photolysis, the C-O-bond cleavage occurred. The C-O-bond cleavage quantum yield (Phi) was estimated from the plots of the T1-state esters disappeared within a laser flash versus the second laser intensities. The C-O-bond cleavage in (beta)NpCO-OPh(Tn) occurred more efficiently than in (alpha)NpCO-OPh(Tn) and that in PhCO-O(beta)Np(Tn) occurred more efficiently than in PhCO-O(alpha)Np(Tn). The Phi value for ester with Ph and beta-Np groups was larger than that for ester with Ph and alpha-Np groups. The Phi value for MeCO-O(alpha)Np(Tn) was similar to those for PhCO-ONp(Tn), while that for MeCO-O(beta)Np(Tn) was much smaller than those for PhCO-ONp(Tn) and MeCO-O(alpha)Np(Tn). On the other hand, no C-O-bond cleavage was observed in NpCO-OMe(Tn). The Phi value depended on the characters of the groups (Np, Ph, and Me) on the ester. Whether R is Ph or Me with or without pi electron, respectively, is important for the C-O-bond cleavage. In other words, electronic delocalization of the T(n) state including Np and ester groups is necessary for the occurrence of the C-O-bond cleavage in NpCO-OR(Tn) and RCO-ONp(Tn).  相似文献   

10.
The lowest excited state of aromatic carbonyl compounds (naphthaldehydes, acetonaphthones, and 10-methylacridone) is changed from the n,pi triplet to the pi,pi singlet which becomes lower in energy than the n,pi triplet by the complexation with metal ions such as Mg(ClO(4))(2) and Sc(OTf)(3) (OTf = triflate), which act as Lewis acids. Remarkable positive shifts of the one-electron reduction potentials of the singlet excited states of the Lewis acid-carbonyl complexes (e.g., 1.3 V for the 1-naphthaldehyde-Sc(OTf)(3) complex) as compared to those of the triplet excited states of uncomplexed carbonyl compounds result in a significant increase in the redox reactivity of the Lewis acid complexes vs uncomplexed carbonyl compounds in the photoinduced electron-transfer reactions. Such enhancement of the redox reactivity of the Lewis acid complexes leads to the efficient C-C bond formation between benzyltrimethylsilane and aromatic carbonyl compounds via the Lewis-acid-promoted photoinduced electron transfer. The quantum yield determinations, the fluorescence quenching, and direct detection of the reaction intermediates by means of laser flash photolysis experiments indicate that the Lewis acid-catalyzed photoaddition reactions proceed via photoinduced electron transfer from benzyltrimethylsilane to the singlet excited states of Lewis acid-carbonyl complexes.  相似文献   

11.
Molecular modeling demonstrates that the first excited state of the triplet ketone (T1K) in azide 1b has a (pi,pi*) configuration with an energy that is 66 kcal/mol above its ground state and its second excited state (T2K) is 10 kcal/mol higher in energy and has a (n,pi*) configuration. In comparison, T1K and T2K of azide 1a are almost degenerate at 74 and 77 kcal/mol above the ground state with a (n,pi*) and (pi,pi*) configuration, respectively. Laser flash photolysis (308 nm) of azide 1b in methanol yields a transient absorption (lambdamax=450 nm) due to formation of T1K, which decays with a rate of 2.1 x 105 s-1 to form triplet alkylnitrene 2b (lambdamax=320 nm). The lifetime of nitrene 2b was measured to be 16 ms. In contrast, laser flash photolysis (308 nm) of azide 1a produced transient absorption spectra due to formation of nitrene 2a (lambdamax=320 nm) and benzoyl radical 3a (lambdamax=370 nm). The decay of 3a is 2 x 105 s-1 in methanol, whereas nitrene 2a decays with a rate of approximately 91 s-1. Thus, T1K (pi,pi*) in azide 1b leads to energy transfer to form nitrene 2b; however, alpha-cleavage is not observed since the energy of T2K (n,pi*) is 10 kcal/mol higher in energy than T1K, and therefore, T2K is not populated. In azide 1a both alpha-cleavage and energy transfer are observed from T1K (n,pi*) and T2K (pi,pi*), respectively, since these triplet states are almost degenerate. Photolysis of azide 1a yields mainly product 4, which must arise from recombination of benzoyl radicals 3a with nitrenes 2a. However, products studies for azide 1b also yield 4b as the major product, even though laser flash photolysis of azide 1b does not indicate formation of benzoyl radical 3b. Thus, we hypothesize that benzoyl radicals 3 can also be formed from nitrenes 2. More specifically, nitrene 2 does undergo alpha-photocleavage to form benzoyl radicals and iminyl radicals. The secondary photolysis of nitrenes 2 is further supported with molecular modeling and product studies.  相似文献   

12.
On irradiation in hexane (248- and 308-nm laser light) 4-diphenyl(trimethylsilyl)methyl-N,N-dimethylaniline, 2, undergoes photodissociation of the C-Si bond giving 4-N,N-dimethylamino-triphenylmethyl radical, 3(*) (lambda(max) at 343 and 403 nm), in very high quantum yield (Phi = 0.92). The intervention of the triplet state of 2 (lambda(max) at 515 nm) is clearly demonstrated through quenching experiments with 2,3-dimethylbuta-1,3-diene, styrene, and methyl methacrylate using nanosecond laser flash photolysis (LFP). The formation of 3(*) is further demonstrated using EPR spectroscopy. The detection of the S(1) state of 2 was achieved using 266-nm picosecond LFP, and its lifetime was found to be 1400 ps, in agreement with the fluorescence lifetime (tau(f) = 1500 ps, Phi(f) = 0.085). The S(1) state is converted almost exclusively to the T(1) state (Phi(T) = 0.92). In polar solvents such as MeCN, 2 undergoes (1) photoionization to its radical cation 2(*)(+), and (2) photodissociation of the C-Si bond, giving radical 3(*) as before in hexane. The formation of 2(*)(+) occurs through a two-photon process. Radical cation 2(*)(+) does not fragment further, as would be expected, to 3(*) via a nucleophile(MeCN)-assisted C-Si bond cleavage but regenerates the parent compound 2. Obviously, the bulkiness of the triphenylmethyl group prevents interaction of 2(*)(+) with the solvent (MeCN) and transfer to it of the electrofugal group Me(3)Si(+). The above results of the laser flash photolysis are supported by pulse radiolysis, fluorescence measurements, and product analysis.  相似文献   

13.
Density functional theory (UB3LYP/6-31G(d,p)) was used to determine substituent effects on the singlet-triplet-state energy gap for 21 meta-substituted phenylnitrenium ions. It was found that strongly electron-donating substituents stabilize the triplet state relative to the singlet state. With sufficiently strong meta electron donors (e.g., m,m'-diaminophenylnitrenium ion) the triplet is predicted to be the ground state. Analysis of equilibrium geometries, Kohn-Sham orbital distributions, and Mulliken spin densities for the triplet states of this series of nitrenium ions leads to the conclusion that there are two spatially distinct types of low-energy triplet states. Simple arylnitrenium ions such as phenylnitrenium ions as well as those having electron-withdrawing or weakly donating meta substituents have lowest-energy triplet states that are n,pi in nature. That is, one singly occupied molecular orbital is orthogonal to the plane of the phenyl ring and one is coplanar. These n,pi triplets are generally characterized by large ArNH bond angles (ca. 130-132 degrees ) and an NH bond that is perpendicular to the plane of the phenyl ring. In contrast, meta donor arylnitrenium ions have a lowest-energy triplet state best described as pi,pi. That is, both singly occupied molecular orbitals are orthogonal to the aromatic ring. Such pi,pi states are characterized by NH bonds that are coplanar with the phenyl ring and have ArNH bond angles that are more acute (ca. 110-111 degrees ). These triplet nitrenium ions have electronic structures analogous to those of meta-benzoquinodimethane derivatives.  相似文献   

14.
The feasibility of generating substituted phenyl radicals and biradicals (with a charged substituent) in the gas phase by laser photolysis was examined by using a Fourier-transform ion cyclotron resonance mass spectrometer. The precursors were generated by ipso-substitution of a halogen atom in the radical cation of a di- or trihalobenzene by various nucleophiles. Photolytic cleavage of the remaining carbon-halogen bond(s) with 266-nm radiation was found to produce many substituted phenyl radicals in greater yields than the earlier employed method, sustained off-resonance irradiated collision-activated dissociation (SORI-CAD). Furthermore, ion generation by photolysis leads to isomerization less often than collisional activation. Finally, not only phenyl-bromine and phenyl-iodine but also certain phenyl-chlorine bonds can be cleaved by photolysis, whereas the synthetic utility of SORI-CAD appears to be largely limited to the cleavage of phenyl-iodine bonds. Hence, laser photolysis greatly expands the variety of substituted phenyl radicals and biradicals that can be synthesized inside a mass spectrometer.  相似文献   

15.
Stoichiometric reactions of TpRu(CO)(NCMe)(Ph) with electron-rich olefins result in metal-mediated cleavage of C-S and C-O bonds.  相似文献   

16.
[reaction: see text] Radical cations of tert-alkyl phenyl sulfides 1-4 have been generated photochemically in MeCN in the presence of the N-methoxyphenanthridinium cation (MeOP(+)), and the rates of C-S bond cleavage have been determined by laser flash photolysis.  相似文献   

17.
萘基衍生物的光敏化瞬态吸收光谱   总被引:1,自引:0,他引:1  
本文利用激光闪光光解技术对二苯甲酮光敏化一系列萘基烷烃衍生物的三重态—三重态吸光光谱及他们之间的三重态能量传递进行了研究. 计算了三重态能量传递速度常数和传递效率, 二苯甲酮在不同体系中的三重态寿命, 探讨了分子结构对光敏化能量传递的影响.  相似文献   

18.
Intermolecular electron transfer (ELT) from a series of naphthalene derivatives (NpD) in the higher triplet excited states (T(n)) to carbon tetrachloride (CCl(4)) in Ar-saturated acetonitrile was observed using the two-color two-laser flash photolysis method. The ELT efficiency depended on the driving force of ELT. Since the ELT from the T(n) state occurred competitively with the internal conversion (IC, T(n) --> T(1)) and the triplet energy transfer (ENT), the ELT became apparent only when sufficient free energy change of ELT was attained. On the other hand, ELT from the T(1) state was not observed, although ELT from the T(1) state with sufficiently long lifetime has a slightly exothermic driving force. The fast ELT from the T(n) state and lack of the reactivity of the T(1) state were explained well by the "sticky" dissociative electron-transfer model based on one-electron reductive attachment to CCl(4) leading to the C-Cl bond cleavage.  相似文献   

19.
Photochemical profiles of omega-cleavage of carbon-X (X = Br and Cl) bonds in m-bromo- and m-chloromethylbenzophenones (m-BMBP and m-CMBP) were investigated by laser photolysis techniques and DFT calculations. m-BMBP and m-CMBP were found to undergo omega-bond cleavage to yield the m-benzoylbenzyl radical (m-BBR) at 295 K, and the quantum yields were determined. No CIDEP signal was detected upon 308 nm laser photolysis of both the compounds. From these observations, it was inferred that the omega-bond of these m-halomethylbenzophenones (m-HMBP) cleaves in the lowest excited singlet state (S(1)(n,pi(*))) upon direct excitation. Upon triplet sensitization of acetone (Ac), the m-BBR formation was observed in transient absorption for an Ac-m-BMBP system, and an efficiency of the C-Br bond cleavage in the lowest triplet state (T(1)(n,pi(*))) of m-BMBP was determined. In contrast, formation of triplet m-CMBP was seen for an Ac-m-CMBP system. Absence of C-Cl bond cleavage in the triplet state of m-CMBP indicated the reactive state of m-CMBP for omega-cleavage is only the S(1)(n,pi(*)) state. Based on the efficiencies and DFT calculations for excited state energies, photoinduced omega-bond dissociation of m- and p-HMBPs was characterized.  相似文献   

20.
Though metal-metal multiple bonds of the transition elements are redox active, their reactivity towards C-X multiple bonds (X = C, N, O, S) vary greatly depending principally on: 1. The coordination geometry of the metal. 2. The oxidation state of the metal and the electronic configuration of the M-M bond. 3. The nature of the attendant ligands. Specific examples of C-X multiple bond activation at dimolybdenum and ditungsten centers are presented that illustrate the importance of these factors. Evidence is presented to support the view that reductive cleavage of a C-X multiple bond can be considered to be equivalent to an intramolecular redox reaction within a [M2CX] "cluster complex," for which the frontier orbital energies of the C-X and M-M multiple bonds are of paramount importance. Some applications of these C-X reductive cleavage reactions toward organic synthesis are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号