首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F. Reuse 《Foundations of Physics》1979,9(11-12):865-882
A canonical formalism for the relativistic classical mechanics of many particles is proposed. The evolution equations for a charged particle in an electromagnetic field are obtained and the relativistic two-body problem with an invariant interaction is treated. Along the same line a quantum formalism for the spinless relativistic particle is obtained by means of imprimitivity systems according to Mackey theory. A quantum formalism for the spin-1/2 particle is constructed and a new definition of spin1/2 in relativity is proposed. An evolution equation for the spin-1/2 particle in an external electromagnetic field is given. The Bargmann Michel, and Telegdi equation follows from this formalism as a quasiclassical approximation. Finally, a new relativistic model for hydrogenlike atoms is proposed. The spectrum predicted is in agreement with Dirac's when radiative corrections have been added.  相似文献   

2.
We develop here the general treatment arising from the Bethe-Salpeter equation for a two-particle bound system in which at least one of the particles is spinless. It is shown that a natural two-component formalism can be formulated for describing the propagators of scalar particles. This leads to a formulation of the Bethe-Salpeter equation in a form very reminiscent of the fermion-fermion case. It is also shown, that using this two-component formulation for spinless particles, the perturbation theory can be systematically developed in a manner similar to that of fermions. Quantum electrodynamics for scalar particles is then developed in the two component formalism, and the problem of bound states, in which one of the constituent particles is spinless, is examined by means of the means of the Bethe-Salpeter equation. For this case, the Bethe-Salpeter equation is cast into a form which is convenient to perform a Foldy-Woutyhuysen transformation which we carry out, keeping the lowest-order relativistic corrections to the nonrelativistic equation. The results are compared with the corresponding fermion-fermion case. It is shown, as might have been expected, that the only spin-independent terms that occur for the fermion-fermion system which do not occur for bound scalar particle cases, is the zitterbewegung contribution. The relevance of the above considerations for systems that are essentially bound by electromagnetic interactions, such as kaonic hydrogen, is discussed.  相似文献   

3.
A new relativistic form factor for a bound two-particle system was obtained for the case of a scalar current. The respective analysis was performed within the relativistic quasipotential approach based on a covariant Hamiltonian formulation of quantum field theory by going over to a three-dimensional relativistic configuration representation for the case of the interaction of two relativistic spinless particles that have arbitrary masses.  相似文献   

4.
The variational method in a reformulated Hamiltonian formalism of Quantum Field Theory (QFT) is used to derive relativistic n-body wave equations for scalar particles (bosons) interacting via a massive or massless mediating scalar field (the scalar Yukawa model). Simple Fock-space variational trial states are used to derive relativistic n-body wave equations. The equations are shown to have the Schrödinger non-relativistic limits, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Some examples of approximate ground state solutions of the n-body relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields.  相似文献   

5.
The properties of an ideal gas of spinless particles are investigated by using the path integral formalism. It is shown that the quantum paths exhibit a fractal character which remains unchanged in the relativistic domain provided the creation of new particles is avoided, and the Brownian motion remains the stochastic process associated with the quantum paths. These results are obtained by using a special representation of the Klein-Gordon wave equation. On the quantum paths the relation between velocity and momentum is not the usual one. The mean square value of the velocity depends on the time needed to define the velocity and its value shows the interplay between pure quantum effects and thermodynamics. The fractal character is also investigated starting from wave equations by analyzing the evolution of a Gaussian wave packet via the Hausdorff dimension. Both approaches give the same fractal character in the same limit. It is shown that the time that appears in the path integral behaves like an ordinary time, and the key quantity is the time interval needed for the thermostat to give to the particles a thermal action equal to the quantum of action. Thus, the partition function calculated via the path integral formalism also describes the dynamics of the system for short time intervals. For low temperatures, it is shown that a time-energy uncertainty relation is verified at the end of the calculations. The energy involved in this relation has not a thermodynamic meaning but results from the fact that the particles do not follow the equations of motion along the paths. The results suggest that the density matrix obtained by quantification of the classical canonical distribution function via the path integral formalism should not be totally identical to that obtained via the usual route.  相似文献   

6.
Beltrami-de Sitter时空中标量和旋量粒子的量子理论   总被引:3,自引:0,他引:3       下载免费PDF全文
李光仪  郭汉英 《物理学报》1982,31(11):1501-1510
参照在Minkowski时空中,从粒子的相对论性经典理论过渡到量子理论,建立标量粒子和旋量粒子的相对论性波动方程的方案,在Beltrami-de Sitter时空中建立了de Sitter不变的标量粒子和旋量粒子的相对论性量子力学的基本方程,它们恰恰分别是Beltrami-de Sitter时空中的Klein-Gordon方程和Dirac方程。在Beltrami-anti de Sitter时空的同时类空超曲面簇上求解了这些方程,得到了分立的本征值和相应的本征函数。 关键词:  相似文献   

7.
The effects of a transverse magnetic field on relativistic particles in two dimensions are treated by using the semiclassical quantization rules and the role played by the spin is emphasized. The Landau levels? energies are analyzed by focusing on the square-root dependence on level index obtained for relativistic spinless particles. This result will be compared to the energies calculated for relativistic particles with spin that are governed by the Dirac equation in relativistic quantum mechanics. Then relativistic massless fermions are discussed. The approach provides a conceptual and intuitive introduction to the grounds of quantum Hall effect in carbon based nanostructures.  相似文献   

8.
We derive and discuss the equations of motion for spinless matter: relativistic spinless scalar fields, particles and fluids in the model of gravity recently proposed by A. Saa with covariantly constant volume with respect to the transposed connection in Einstein-Cartan spaces. A new interpretation of this theory as a theory with variable Planck constant is suggested. We show that the consistency of the semiclassical limit of the wave equation and classical motion dictates a new definite universal interaction of torsion with massive fields.  相似文献   

9.
In this paper, starting from a pure group-theoretic point of view, we develop an approach to describing particles with different spins in the framework of a theory of scalar fields on the Poincaré group. Such fields can be considered as generating functions for conventional spin-tensor fields. The case of two, three, and four dimensions are elaborated in detail. Discrete transformations C, P, T are defined for the scalar fields as automorphisms of the Poincaré group. We classify the scalar functions, and obtain relativistic wave equations for particles with definite spin and mass. There exist two different types of scalar functions (which describe the same mass and spin), one related to a finite-dimensional nonunitary representation and the other to an infinite-dimensional unitary representation of the Lorentz subgroup. This allows us to derive both usual finite-component wave equations for spin-tensor fields and positive-energy, infinite-component wave equations.  相似文献   

10.
The relativistic problem of spinless particles with position-dependent mass subject to kink-like potentials (~tanh αx) is investigated. By using the basic concepts of the supersymmetric quantum mechanics formalism and the functional analysis method, we solve exactly the position-dependent effective mass Klein–Gordon equation with the vector and scalar kink-like potential coupling, and obtain the bound state solutions in the closed form. It is found that in the presence of position-dependent mass there exists the symmetry that the discrete positive energy spectra and negative energy spectra are symmetric about zero energy for the case of a mixed vector and scalar kink-like potential coupling, and in the presence of constant mass this symmetry only appears for the cases of a pure scalar kink-like potential coupling or massless particles.  相似文献   

11.
A detailed study is presented of the relativistic Wigner function for a quantum spinless particle evolving in time according to the Salpeter equation.  相似文献   

12.
New relativistic semiclassical conditions and leptonic decay widths are obtained within quantum chromodynamics for nonsingular confining quasipotentials and funnel-type potentials (instantoninteraction approximation). The respective analysis is performed within a fully covariant quasipotential approach in quantum field theory. This approach is formulated in the relativistic configuration representation for the case of interaction between two relativistic spinless particles of arbitrary mass.  相似文献   

13.
The von Neumann evolution equation for the density matrix and the Moyal equation for the Wigner function are mapped onto the evolution equation for the optical tomogram of the quantum state. The connection with the known evolution equation for the symplectic tomogram of the quantum state is clarified. The stationary states corresponding to quantum energy levels are associated with the probability representation of the von Neumann and Moyal equations written for optical tomograms. The classical Liouville equation for optical tomogram is obtained. An example of the parametric oscillator is considered in detail.  相似文献   

14.
Spatial and/or temporal propagation of light waves in periodic optical structures offers a unique possibility to realize in a purely classical setting the optical analogues of a wide variety of quantum phenomena rooted in relativistic wave equations. In this work a brief overview of a few optical analogues of relativistic quantum phenomena, based either on spatial light transport in engineered photonic lattices or on temporal pulse propagation in Bragg grating structures, is presented. Examples include spatial and temporal photonic analogues of the Zitterbewegung of a relativistic electron, Klein tunneling, vacuum decay and pair production, the Dirac oscillator, the relativistic Kronig–Penney model, and optical realizations of non-Hermitian extensions of relativistic wave equations.  相似文献   

15.
We treat the dynamics of colliding nuclear slabs in a relativistic quantum field theory by using the relativistic mean field approximation. Starting from Walecka's lagrangian, the nucleons are represented by single-particle spinors determined by a Dirac equation that contains a repulsive mean vector meson field and an attractive mean scalar meson field. Both fields satisfy Klein-Gordon equations whose source terms are again determined by the nucleon spinors. The two equal nuclear slabs are translationally invariant in two transverse dimensions and consist of spin and isospin symmetric nuclear matter. By specification of appropriate initial conditions for the collision, we numerically solve the system of coupled Dirac and Klein-Gordon equations for lab energies per nucleon up to 420 MeV. For small energies the results are similar to TDHF results. The time dependence of the density distribution, the mean meson fields, and the damping of the collision are studied. At the highest bombarding energy retardation effects are taken into account.  相似文献   

16.
The causal Green function or Feynman propagator for the free-field Klein-Gordon equation and related singular functions, defined as distributions, are related to the causal time-boundary data. Probability densities and amplitudes are defined in terms of the solutions of the Klein-Gordon equation for a complex scalar field interacting with an electromagnetic field. The convergence of the perturbation expansion of the solution of the Klein-Gordon equation for a charged scalar particle in an external field is shown for well-behaved electromagnetic potentials. Other relativistic wave equations are discussed briefly.  相似文献   

17.
Quantum simulation is a powerful tool to study a variety of problems in physics, ranging from high-energy physics to condensed-matter physics. In this article, we review the recent theoretical and experimental progress in quantum simulation of Dirac equation with tunable parameters by using ultracold neutral atoms trapped in optical lattices or subject to light-induced synthetic gauge fields. The effective theories for the quasiparticles become relativistic under certain conditions in these systems, making them ideal platforms for studying the exotic relativistic effects. We focus on the realization of one, two, and three dimensional Dirac equations as well as the detection of some relativistic effects, including particularly the well-known Zitterbewegung effect and Klein tunneling. The realization of quantum anomalous Hall effects is also briefly discussed.  相似文献   

18.
Peculiarities of symmetrical quantum systems are considered with the aid of the Mackey's induced representations theory. The four-dimensional coordinate representation of the relativistic quantum mechanics suggested by Stueckelberg in 1941 is rederived, reinterpreted and generalized for an arbitrary spin. Then it is applied to introduce the causal propagator as a particleantiparticle transition amplitude without consideration of a field equation. Finally the theory of relativistic quantum particles interaction is reformulated without an appeal to the concept of quantized fields.  相似文献   

19.
It is known that the actions of field theories on a noncommutative space-time can be written as some modified (we call them θ-modified) classical actions already on the commutative space-time (introducing a star product). Then the quantization of such modified actions reproduces both space-time noncommutativity and the usual quantum mechanical features of the corresponding field theory. In the present article, we discuss the problem of constructing θ-modified actions for relativistic QM. We construct such actions for relativistic spinless and spinning particles. The key idea is to extract θ-modified actions of the relativistic particles from path-integral representations of the corresponding noncommutative field theory propagators. We consider the Klein–Gordon and Dirac equations for the causal propagators in such theories. Then we construct for the propagators path-integral representations. Effective actions in such representations we treat as θ-modified actions of the relativistic particles. To confirm the interpretation, we canonically quantize these actions. Thus, we obtain the Klein–Gordon and Dirac equations in the noncommutative field theories. The θ-modified action of the relativistic spinning particle is just a generalization of the Berezin–Marinov pseudoclassical action for the noncommutative case.  相似文献   

20.
Using the Radon integral transform of the relativistic kinetic equation for a spin-zero particle, we obtain the classical and quantum evolution equations for the tomographic probability density (tomogram) describing the states of the particle in both the classical and quantum pictures. The Green functions (propagators) of the evolution equations of a free particle are constructed. The examples of the evolution of Gaussian tomogram is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号