首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preferential solvation of water plays an important role in ferrocene research which is a subject of current interest. Voltammetric investigations were carried out for Au electrode in acetonitrile/water, showing preferential solvation of water. In our work, the preferential solvation of water in acetonitrile/water was studied by electrochemical methods including cyclic volitammetry, electrochemical impedance spectra and double‐step chronoamperometry. Ferrocenemethanol (FcCH2OH) molecules as a solute spontaneously adsorb on the electrode surface in anhydrous acetonitrile, resulting from acetonitrile molecules tend to form an acetonitrile solvent layer on the surface of the electrode and acetonitrile solvent layer has a lower energy barrier than the aqueous solvent layer, which has been obtained by modeling solvation. The solvent strongly influences electrochemical behavior of solute. Once there is an amount of water in acetonitrile solvent, FcCH2OH that adsorbed on the electrode surface desorb. This is because water preferentially solvate with FcCH2OH in term of intermolecular forces between solvent and solute. Moreover, hydrogen bond between water molecules and FcCH2OH molecules is stronger than dipole‐dipole interaction between acetonitrile molecules and FcCH2OH molecules in solvation effect. Through electrochemical behavior of FcCH2OH changing, preferential solvation of water is analyzed by electrochemical methods.  相似文献   

2.
The role of hydrogen and the near-electrode gas–liquid flows in the formation of the nickel surface microrelief on a smooth copper electrode in a sulfate electrolyte is studied at different values of solution pH, current density, and deposit thickness. Depending on the discharge kinetics of ions being reduced and the mechanism of removal of bubbles from the electrode surface, a nickel-plating electrolyte displays either ideal or poor microthrowing and leveling powers. The development of three- and two-dimensional microwaves discovered on the deposits is closely related to the nature of natural-convective motion of electrolyte and the influence exerted by mass transfer on the electrocrystallization process.  相似文献   

3.
A layered structure of water molecules formed on a Cu(111) electrode surface during hydrogen evolution in sulfuric acid solution was studied by surface X-ray diffraction and infrared reflection absorption methods. Water molecules in the surface layers take a closest pack-like stacking structure with nearest-neighbor oxygen-oxygen distances in intra-(0.322(5) nm) and inter-(0.275(15) nm) layers of multi-domains; the infrared spectra of the layered water on the Cu electrode surface showed the existence of free OH(OD) and hydrogen-bonded OH(OD) of water molecule.  相似文献   

4.
Within the Nernst diffusion model, the effect the convection has on the adsorption at a planar electrode is studied for the case of a diffusion-controlled stage of adsorption and the behavior of the Frumkin–Melik–Gaikazyan finite adsorption impedance is analyzed. Allowing for the convection leads to new functional frequency dependences of constituents of this impedance at low frequencies, where the active constituent depends on the diffusion layer thickness more heavily than the capacitive one. During adsorption of neutral molecules from a layer of finite thickness, an additional relaxation time emerges in an electrochemical system, which results from a finite rate of motion of species in the near-electrode layer. Ignoring the convection may lead to erroneous interpretation of the adsorption mechanism.  相似文献   

5.
The objective was to examine how a bicontinuous cubic phase influences the diffusion and electrochemical activity of dissolved molecules. The cubic phase is a structure with three-dimensional continuous channels of water separated by an apolar membrane. A redox active molecule can dissolve in three different environments. A hydrophobic molecule will prefer the interior of the membrane, a hydrophilic molecule will prefer the water channels, and an amphiphilic molecule will be situated with its headgroup at the surface of the membrane and its tail in the interior. The electrochemical activity was measured with cyclic voltammetry and the transport behavior with chronocoulometry. All the molecules were redox active in the cubic phase; that is, all the molecules could reach the surface of the electrode and react. The cubic phase made the kinetics of the charge transfer slower, showing a quasi-reversible behavior. The reason may be that a layer of the membrane adheres to the hydrophobic electrode surface. The diffusion experiment showed that the diffusion was slower than in solution. The molecules that were restricted to diffuse within the membrane gave particularly low mass transport rates.  相似文献   

6.
It is shown that plain solvent accumulates in the near-electrode space in the presence of a solution counterflow counterbalancing velocity of the ion moving away from the electrode.  相似文献   

7.
硫酸溶液中Pt电极表面过程的EQCM研究   总被引:5,自引:0,他引:5  
应用电化学循环伏安和石英晶体微天平(EQCM)方法研究了0.1mol·L-1硫酸溶液中Pt电极表面的吸附和氧化过程.从电极表面质量变化的结果分析,可认为正向电位扫描时氢区表面质量的增加是由于水分子取代Had引起的,而双电层区的质量增加则是由于水的吸附模式逐渐由氢端吸附转向氧端吸附所致.根据频率变化和电量数据,进一步推算出水在双电层区是以低放电吸附形式出现的,1molPt原子和水分子只发生0.054mol的电荷转移.本文结果可为认识Pt电极表面过程提供定量的新数据.  相似文献   

8.
Recently, non-Faradaic effects were used to modify the electronic structure and reactivity of electrode-bound species. We hypothesize that these electrostatic perturbations could influence the chemical reactivity of electrolyte species near an electrode in the absence of Faradaic electron transfer. A prime example of non-Faradaic effects is acid-base dissociation near an interface. Here, we probed the near-electrode dissociation of N-heterocycle-BF3 Lewis adducts upon electrode polarization, well outside of the redox potential window of the adducts. Using scanning electrochemical microscopy and confocal fluorescence spectroscopy, we detected a potential-dependent depletion of the adduct near the electrode. We propose an electro-inductive effect where a more positive potential leads to electron withdrawal on the N-heterocycle. This study takes a step forward in the use of electrostatics at electrochemical interfaces for field-driven electrocatalytic and electro-synthetic processes.  相似文献   

9.
Mass transfer to a horizontal electrode during electrolytic evolution of oxygen and hydrogen at current densities of 100 to 10 000 A/m2 is studied. The mass transfer intensity is evaluated from the diffusion layer thickness, which varies from 60 to 5 μm at such current densities. Calculations show that the decrease in the diffusion layer thickness is due to bubbles with a stationary interphase surface crossing the diffusion layer. During the hydrogen evolution, the diffusion layer thickness is nearly the same for vertical and horizontal electrodes. During the oxygen evolution, the diffusion layer is much thinner for a horizontal electrode. Additional decrease of the diffusion layer thickness during the evolution of oxygen is associated with the lesser solution density in the near-electrode layer and with its transport away by means of natural convection.  相似文献   

10.
A combination of Langmuir-Blodgett and Langmuir-Schaefer techniques was employed to deposit 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers at a gold electrode surface. One leaflet consisted of hydrogen-substituted acyl chains, and the second leaflet was composed of molecules with deuterium-substituted acyl chains. This architecture allowed for layer-by-layer analysis of the structure of the bilayer. Photon polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was used to determine the conformation and orientation of the acyl chains of DMPC molecules in the individual leaflets as a function of the potential applied to the gold electrode. The bilayer is adsorbed onto the metal surface when the field applied to the membrane does not exceed approximately 108 V/m. When adsorbed, the bottom leaflet is in contact with a hydrophobic metal surface, and the top leaflet is interacting with the aqueous solution. The asymmetry of the environment has an effect on the orientation of the DMPC molecules in each leaflet. The tilt angle of the acyl chains of the DMPC molecules in the bottom leaflet that is in contact with the gold is approximately 10 degrees smaller than that observed for the top leaflet that is exposed to the solution. These studies provide direct evidence that the structure of a phospholipid bilayer deposited at an electrode surface is affected by interaction with the metal.  相似文献   

11.
A kinetic study is performed for variations in the transparency of the near-electrode layer of colloidal magnetite in kerosene under the action of a pulsed electric field. The transparency of the near-electrode region is found to be noticeably decreased 0.03–0.3 s after the electric field is switched-on and to be subsequently restored to the initial level. It is shown that the observed effect can be explained by the electric field-induced motion of magnetite nanoparticles, which are charged in the near-electrode region. The mobility of magnetite particles is estimated from the data on the characteristic time of variations in the transparency with the field strength.  相似文献   

12.
A highly concentrated NaClO_4 as a main supporting electrolyte was used to break hydrogen-bonded water structure in systems studied, by which strong surface-enhanced Raman scattering (SERS) signals of water from silver electrodes were detected in the system having a ten times lower halide concentration than the ordinary one; and a similar phenomenon was also observed in a system containing pseudo-halide SCN~- ions. The SERS spectra obtained in 0.1 mol/L LiCl and 3.0 mol/L LiClO_4 indicate the presence of two kinds of water molecules with very different behaviors on the surface. This peculiar phenomenon is discussed in details. It is achievable to extend SERS study on adsorbed water by adequate choice of electrolyte and control of surface treatment to the electrode in order to have a deeper insight into the complex structure of the electrochemical interface.  相似文献   

13.
Ito M  Nakamura M 《Faraday discussions》2002,(121):71-84; discussion 97-127
Water adsorption on Pt( 111) and Ru(001) treated with oxygen, hydrogen chloride and sodium atom at 20 K has been studied by Fourier transform infrared spectroscopy, scanning tunneling microscopy and surface X-ray diffraction. Water molecules chemisorb predominantly on the sites of the electronegative additives, forming hydrogen bonds. Three types of hydration water molecules coordinate to an adsorbed Na atom through an oxygen lone pair. In contrast, water molecules adsorb on electrode surfaces in a simple way in solution. In 1 mM CuSO4 + 0.5 M H2SO4 solution on an Au(111) electrode surface, water molecules coadsorb not only with sulfuric acid anions through hydrogen bonding but also with copper, over wide potential ranges. In the first stage of underpotential deposition (UPD), each anion is accommodated by six copper hexagon (honeycomb) atoms on which water molecules dominate. At any UPD stage water molecules interact with both the copper atom and sulfuric acid anions on the Au(111) surface. Water molecules also coadsorb with CO molecules on the surface of 2 x 2-2CO-Ru(001). All of the hydration water molecules chemisorb weakly on the surfaces. There appears to be a correlation between the orientation of hydrogen bonding water molecules and the electrode potential.  相似文献   

14.
Driven by the persisting poor understanding of the sluggish kinetics of the hydrogen evolution reaction (HER) on Pt in alkaline media, a direct correlation of the interfacial water structure and activity is still yet to be established. Herein, using Pt and Pt–Ni nanoparticles we first demonstrate a strong dependence of the proton donor structure on the HER activity and pH. The structure of the first layer changes from the proton acceptors to the donors with increasing pH. In the base, the reactivity of the interfacial water varied its structure, and the activation energies of water dissociation increased in the sequence: the dangling O−H bonds < the trihedrally coordinated water < the tetrahedrally coordinated water. Moreover, optimizing the adsorption of H and OH intermediates can re-orientate the interfacial water molecules with their H atoms pointing towards the electrode surface, thereby enhancing the kinetics of HER. Our results clarified the dynamic role of the water structure at the electrode–electrolyte interface during HER and the design of highly efficient HER catalysts.  相似文献   

15.
Horswell SL  Zamlynny V  Li HQ  Merrill AR  Lipkowski J 《Faraday discussions》2002,(121):405-22;discussion 441-62
Chronocoulometry and photon polarisation modulation infrared reflection absorption spectroscopy (PM-IRRAS) have been employed to study the fusion of dimyristoylphosphatidylcholine (DMPC) vesicles onto a Au(111) electrode surface. The results show that fusion of the vesicles is controlled by the electrode potential or charge at the electrode surface (sigmaM). At charge densities of -15 microC cm(-2) < sigmaM < 0 microC cm(-2), DMPC vesicles fuse to form a condensed film. When sigmaM < -15 microC cm(-2), de-wetting of the film from the electrode surface occurs. The film is detached from the electrode surface; however, phospholipid molecules remain in its close proximity in an ad-vesicle state. The state of the film can be conveniently changed by adjustment of the potential applied to the gold electrode. PM-IRRAS experiments demonstrated that the potential-controlled transitions between various DMPC states proceed without conformational changes and changes in the packing of the acyl chains of DMPC molecules. However, a remarkable change in the tilt angle of the acyl chains with respect to the surface normal occurs when ad-vesicles spread to form a film at the gold surface. When the bilayer is formed at the gold surface, the acyl chains of DMPC molecules are significantly tilted. The IR spectra have also demonstrated a pronounced change in the hydration of the polar head region that accompanies the spreading of ad-vesicles into the film. For the film deposited at the electrode surface, the infrared results showed that the temperature-controlled phase transition from the gel state to the liquid crystalline state occurs within the same temperature range as that observed for aqueous solutions of vesicles. The results presented in this work show that PM-FTIR spectroscopy, in combination with electrochemical techniques, is an extremely powerful tool for the study of the structure of model membrane systems at electrode surfaces.  相似文献   

16.
Experimental data are compared with the results of calculations by the finite difference technique within the dynamic diffusion model of the interphase potential on an example of a picrate-selective electrode in real scenarios corresponding to the conditions of the determination of selectivity coefficients by the methods recommended by IUPAC. It was found that, in the majority of the considered cases, the calculated values of the potential and selectivity coefficients and also the dynamics of potential change at particular steps well agree with the experimental data. The model has principal restrictions, leading the failure of calculations, when the concentration of potential-determining ions in the near-electrode layer of the solution performed is low according to the algorithm of measurements, whereas the instant increase in its concentration in the surface membrane layer due to the replacement of the sample solution induces a flux of these ions from the surface deep into of the membrane.  相似文献   

17.
含水离子液体/金属界面结构的SERS研究   总被引:1,自引:1,他引:0  
利用表面增强拉曼光谱(SERS)研究了不同含水量下离子液体及水分子在银电极上随电位变化吸附方式的改变,通过水的O-H伸缩振动谱峰频率变化特征,详细探究了水在离子液体/电极界面上的存在形式及作用方式以及体系零电荷电位与水含量的关系.水含量较低时O-H伸缩振动的Stark系数值较低,随水含量的增加O-H伸缩振动的谱峰位置逐渐向高波数方向移动,同时O-H伸缩振动的Stark系数也逐渐增大,1molL-1[BMIM]Br水溶液中达到76cm-1V-1,且体系的零电荷电位正移,这些差异与水在离子液体中所形成氢键的程度及水分子的存在形式密切相关,在水的含量较低时水与离子液体阳离子通过氢键作用而存在于界面层中,当水的含量增加时,水分子间氢键的作用增强,水与电极表面直接作用的可能性增大.  相似文献   

18.
A composition of quinhydrone and spectral graphite powders and also an epoxy resin with polyethylene polyamine as a binder is studied for fabricating a solid indicator electrode, renewed by mechanically cutting a thin surface layer, intended for measurements of the pH of solutions. It is shown that after the renewal of the electrode surface, the dissolution of the components of quinhydrone occurs in the near-electrode layer and the electrode potential depends on the pH of the solution and the time of the contact of the electrode with the solution. The pH dependence of potentials (E t ) at t = const in the pH range 2.0–7.0 is linear and close to the theoretical one. In the pH range 7.0–13.9, the results of measurements of E t by the proposed carbon-quinhydrone electrode, in contrast to the traditional quinhydrone electrode, are well reproducible and linearly depend on pH. This opens up the possibility of using the electrode for the determination of E t also in alkaline media.  相似文献   

19.
A series of density functional theory (DFT) based electrochemical models are applied to systematically examine the effect of solvent, local electric field, and electrode potential on oxygen reduction reaction (ORR) kinetics. Specifically, the key elementary reaction steps of molecular oxygen dissociation, molecular oxygen protonation, and reduction of a hydroxyl adsorbate to water over the Pt(111) surface were considered. The local electric field has slight influence on reaction energetics at the vacuum interface. Solvent molecules stabilize surface adsorbates, assisting oxygen reduction. A collective solvation-potential coupled effect is identified by including long range solvent-solvent interactions in the DFT model. The dominant path of the ORR reaction varies with electrode potential and among the modeling approaches considered. The potential dependent reaction path determined from the solvated model qualitatively agrees with experiment ORR kinetics.  相似文献   

20.
The crystal face specificity of metal–water interaction at Ag electrode/solution interfaces is investigated by using acetonitrile (ACN) as a probe molecule of the water interfacial structure or as a solvent in which water is a solute. Capacitance and voltammetric curves suggest that ACN is weakly adsorbed from aqueous solution on Ag in the order (111) > (100) > (110). Apparent inconsistencies of adsorption parameters are explained by the occurrence of two ACN adsorption modes: (i) directly on the metal surface and (ii) on the water layer adsorbed on the metal surface. Ag surface oxidation in ACN in the presence of variable amounts of water suggests that water has an inhibiting effect on Ag oxidation, the diminution of the water content in ACN leading to free anodic dissolution of the metal surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号